Citation: Yan Yaru, Qi Bowen, Mo Ting, Wang Xiaohui, Wang Juan, Shi Shepo, Liu Xiao, Tu Pengfei. Research Progress of Rhamnosyltransferase[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2281-2295. doi: 10.6023/cjoc201806004 shu

Research Progress of Rhamnosyltransferase

  • Corresponding author: Shi Shepo, shishepo@163.com Liu Xiao, fcliuxiao@163.com Tu Pengfei, pengfeitu@163.com
  • Received Date: 1 June 2018
    Revised Date: 10 August 2018
    Available Online: 14 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 81402809) and the Foundation from Beijing University of Chinese Medicine (No. 2018-JYB-XJQ006)the National Natural Science Foundation of China 81402809the Foundation from Beijing University of Chinese Medicine 2018-JYB-XJQ006

Figures(12)

  • Rhamnosylation is an important type of glycosylation reaction which is widely involved in organic synthesis and structural modification of natural products. In vivo, rhamnosylation is catalyzed by rhamnosyltransferase that transferred the active rhamnosyl donors to the specific sugar acceptors. A larger number of rhamnosyltransferases have been identified in natural and they often played key roles in the biosynthesis of diverse natural products as well as maintaining the cell structure and physiological functions of biological organisms. Besides, enzymatic rhamnosylation has been an effective complementary method to chemical catalysis in the field of organic glycosylation modifications due to its high catalysis efficiency and specificity, mild reaction conditions as well as environment friendship and so on. In this article, research progresses of rhamnosyltransferase are reviewed based on their enzymatic functions, three dimensional structure investigations, rhamnosyl donors' synthesis, enzymatic catalysis promiscuities, and biochemical catalysis applications. Finally, the future development and application of them are also prospected.
  • 加载中
    1. [1]

      Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99.  doi: 10.1039/np9971400099

    2. [2]

      Aksamit-Stachurska, A.; Korobczak-Sosna, A.; Kulma, A.; Szopa, J. BMC Biotechnol. 2008, 8, 25.

    3. [3]

      Wang, J.; Hou, B. K. Plant Physiol. Commun. 2008, 44, 997(in Chinese).
       

    4. [4]

      Jin, Y.; Wu, X. R.; Chen, Y. J. J. China Pharm. Univ. 2017, 48, 529(in Chinese).  doi: 10.11665/j.issn.1000-5048.20170504
       

    5. [5]

      Wu, X. M.; Xu, T. T.; Chu, J. L.; He, B. F. Chin. J. Nat. Med. 2010, 8, 389(in Chinese).
       

    6. [6]

      Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A. M.; Ghedira, K.; Dijoux-Franca, M. G.; Chekir-Ghedira, L. Toxicol. In Vitro 2008, 22, 567.

    7. [7]

      An, J.; Zuo, G. Y.; Hao, X. Y.; Wang, G. C.; Li, Z. S. Phyto-medicine 2011, 18, 990.
       

    8. [8]

      Choi, H. J.; Kim, J. H.; Lee, C. H.; Ahn, Y. J.; Song, J. H.; Baek, S. H.; Kwon, D. H. Antiviral Res. 2009, 81, 77.
       

    9. [9]

      Choi, H. J.; Song, J. H.; Park, K. S.; Kwon, D. H. Eur. J. Pharm. Sci. 2009, 37, 329.  doi: 10.1016/j.ejps.2009.03.002

    10. [10]

      Rodríguez, P.; González-Mujica, F.; Bermúdez, J.; Hasegawa, M. Fitoterapia 2010, 81, 1220.
       

    11. [11]

      Diantini, A.; Subarnas, A.; Lestari, K.; Halimah, E.; Susilawati, Y.; Supriyatna.; Julaeha, E.; Achmad, T. H.; Suradji, E. W.; Yamazaki, C.; Kobayashi, K.; Koyama, H.; Abdulah, R. Oncol. Lett. 2012, 3, 1069.

    12. [12]

      Sharoar, M. G.; Thapa, A.; Shahnawaz, M.; Ramasamy, V. S.; Woo, E. R.; Shin, S. Y.; Park, I. S. J. Biomed. Sci. 2012, 19, 104.
       

    13. [13]

      Holler, J. G.; Christensen, S. B.; Slotved, H. C.; Rasmussen, H. B.; Gúzman, A.; Olsen, C. E.; Petersen, B.; Mølgaard, P. J. An-timicrob. Chemother. 2012, 67, 1138.

    14. [14]

      Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P. I.; Zažímalová, E.; Schäffner, A. R. New Phytol. 2014, 201, 466.  doi: 10.1111/nph.12558

    15. [15]

      Bols, M.; Binderup, L.; Hansen, J.; Rasmussen, P. J. Med. Chem. 1992, 35, 2768.
       

    16. [16]

      Thibodeaux, C. J.; Melançon, C. E.; Liu, H. W. Angew. Chem., Int. Ed. 2008, 47, 9814.

    17. [17]

      Kamiya, S.; Esaki, S.; Hama, M. Agric. Biol. Chem. 1967, 31, 397.

    18. [18]

      Nishio, T.; Miyake, Y.; Tsujii, H.; Hakamata, W.; Kadokura, K.; Oku, T. Biosci., Biotechnol., Biochem. 1996, 60, 2038.  doi: 10.1271/bbb.60.2038

    19. [19]

      Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. Nucleic Acids Res. 2009, 37, 233.

    20. [20]

      Guo, S.; Luo, H. M.; Song, J. Y.; Sun, C.; Chen, S. L. World. Sci. Technol. (Modern. Tradit. Chin. Med. Materia. Medica) 2012, 14, 2126(in Chinese).

    21. [21]

      Yonekura-Sakakibara, K.; Tohge, T.; Niida, R.; Saito, K. J. Biol. Chem. 2007, 282, 14932.

    22. [22]

      Luzhetskyy, A.; Méndez, C.; Salas, J. A.; Bechthold, A. Curr. Top. Med. Chem. 2008, 8, 680.  doi: 10.2174/156802608784221514

    23. [23]

      Yang, J.; Hoffmeister, D.; Liu, L.; Fu, X.; Thorson, J. S. Bioorg. Med. Chem. 2004, 12, 1577.

    24. [24]

      Kren, V.; Martínková, L. Curr. Med. Chem. 2001, 8, 1303.  doi: 10.2174/0929867013372193

    25. [25]

      Jones, P.; Messner, B.; Nakajima, J.; Schäffner, A. R.; Saito, K. J. Biol. Chem. 2003, 278, 43910.

    26. [26]

      Rojas Rodas, F.; Rodriguez, T. O.; Murai, Y.; Iwashina, T.; Sugawara, S.; Suzuki, M.; Nakabayashi, R.; Yonekura-Sakakibara, K.; Saito, K.; Kitajima, J.; Toda, K.; Takahashi, R. Plant Mol. Biol. 2014, 84, 287.

    27. [27]

      McMullen, M. D.; Kross, H.; Snook, M. E.; Cortés-Cruz, M.; Houchins, K. E.; Musket, T. A.; Coe, E. H. Jr. J. Hered. 2004, 95, 225.  doi: 10.1093/jhered/esh042

    28. [28]

      Casas, M. I.; Falcone-Ferreyra, M. L.; Jiang, N.; Mejía-Guerra, M. K.; Rodríguez, E.; Wilson, T.; Engelmeier, J.; Casati, P.; Grotewold, E. Plant Cell 2016, 28, 1297.  doi: 10.1105/tpc.16.00003

    29. [29]

      Feng, K.; Chen, R.; Xie, K.; Chen, D.; Guo, B.; Liu, X.; Liu, J.; Zhang, M.; Dai, J. Org. Biomol. Chem. 2018, 16, 452.  doi: 10.1039/C7OB02763J

    30. [30]

      Frydman, A.; Weisshaus, O.; Bar-Peled, M.; Huhman, D. V.; Sumner, L. W.; Marin, F. R.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Plant J. 2004, 40, 88.

    31. [31]

      Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J. J. Biol. Chem. 1991, 266, 20953.

    32. [32]

      Frydman, A.; Liberman, R.; Huhman, D. V.; Carmeli-Weissberg, M.; Sapir-Mir, M.; Ophir, R.; Sumner, L.; Eyal, Y. Plant J. 2013, 73, 166.

    33. [33]

      Liu, X. G.; Lin, C.; Ma, X. D.; Tan, Y.; Wang, J. Z.; Zeng, M. Front. Plant Sci. 2018, 9, 166.

    34. [34]

      Welch, C. R.; Wu, Q.; Simon, J. E. Curr. Anal. Chem. 2008, 4, 75.

    35. [35]

      Brugliera, F.; Holton, T. A.; Stevenson, T. W.; Farcy, E.; Lu, C. Y.; Cornish, E. C. Plant J. 1994, 5, 81.  doi: 10.1046/j.1365-313X.1994.5010081.x

    36. [36]

      Li, X. J.; Lai, B.; Zhao, J. T.; Qin, Y. H.; He, J. M.; Huang, X. M.; Wang, H.C.; Hu, G. B. Mol. Breed. 2016, 36, 93.  doi: 10.1007/s11032-016-0518-3

    37. [37]

      Li, P.; Li, Y. J.; Zhang, F. J.; Zhang, G. Z.; Jiang, X. Y.; Yu, H. M.; Hou, B. K. Plant J. 2017, 89, 85.  doi: 10.1111/tpj.2017.89.issue-1

    38. [38]

      Hsu, Y. H.; Tagami, T.; Matsunaga, K.; Okuyama, M.; Suzuki, T.; Noda, N.; Suzuki, M.; Shimura, H. Plant J. 2017, 89, 325.  doi: 10.1111/tpj.13387

    39. [39]

      McCue, K. F.; Allen, P. V.; Shepherd, L. V.; Blake, A.; Maccree, M. M.; Rockhold, D. R.; Novy, R. G.; Stewart, D.; Davies, H. V.; Belknap, W. R. Phytochemistry 2007, 68, 327.

    40. [40]

      Uehara, Y.; Tamura, S.; Maki, Y.; Yagyu, K.; Mizoguchi, T.; Tamiaki, H.; Imai, T.; Ishii, T.; Ohashi, T.; Fujiyama, K.; Ishimizu, T. Biochem. Biophys. Res. Commun. 2017, 486, 130.  doi: 10.1016/j.bbrc.2017.03.012

    41. [41]

      Luzhetskyy, A.; Mayer, A.; Hoffmann, J.; Pelzer, S.; Holzenkämper, M.; Schmitt, B.; Wohlert, S. E.; Vente, A.; Bechthold, A. ChemBio-Chem 2007, 8, 599.  doi: 10.1002/(ISSN)1439-7633

    42. [42]

      Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Pharmacol. Rev. 2004, 56, 185.

    43. [43]

      Sianidis, G.; Wohlert, S. E.; Pozidis, C.; Karamanou, S.; Lu-zhetskyy, A.; Vente, A.; Economou, A. J. Biotechnol. 2006, 125, 425.
       

    44. [44]

      Gullón, S.; Olano, C.; Abdelfattah, M. S.; Braña, A. F.; Rohr, J.; Méndez, C.; Salas, J. A. Appl. Environ. Microbiol. 2006, 72, 4172.

    45. [45]

      Decker, H.; Rohr, J.; Motamedi, H.; Zähner, H.; Hutchinson, C. R. Gene 1995, 166, 121.

    46. [46]

      Blanco, G.; Patallo, E. P.; Braña, A. F.; Trefzer, A.; Bechthold, A.; Rohr, J.; Méndez, C.; Salas, J. A. Chem. Biol. 2001, 8, 253.  doi: 10.1016/S1074-5521(01)00010-2

    47. [47]

      Doumith, M.; Legrand, R.; Lang, C.; Salas, J. A.; Raynal, M. C. Mol. Microbiol. 1999, 34, 1039.

    48. [48]

      Zhang, Q. J. Chin. J. Clin. Rational Drug Use 2013, 6, 177(in Chinese).

    49. [49]

      Zhang, C.; Griffith, B. R.; Fu, Q.; Albermann, C.; Fu, X.; Lee, I. K.; Li, L.; Thorson, J. S. Science 2006, 313, 1291.  doi: 10.1126/science.1130028

    50. [50]

      Chen, Y. L.; Chen, Y. H.; Lin, Y. C.; Tsai, K. C.; Chiu, H. T. J. Biol. Chem. 2009, 284, 7352.

    51. [51]

      Ikeda, H.; Nonomiya, T.; Usami, M.; Ohta, T.; Omura, S. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9509.  doi: 10.1073/pnas.96.17.9509

    52. [52]

      Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T. Nat. Biotechnol. 2003, 21, 526.

    53. [53]

      Wu, Q.; Wu, J. B.; Li, Y. Chin. J. Antibiot. 1999, 24, 401.

    54. [54]

      Wang, L. Y.; Li, S. T.; Li, Y. FEMS Microbiol. Lett. 2003, 220, 21.  doi: 10.1016/S0378-1097(03)00044-2

    55. [55]

      Li, X.; Wang, L.; Bai, L.; Yao, C.; Zhang, Y.; Zhang, R.; Li, Y. J. Appl. Microbiol. 2010, 108, 1544.  doi: 10.1111/jam.2010.108.issue-5

    56. [56]

      Wu, H.; Wang, W.; Han, S. Y. Microbiology (Beijing, China) 2007, 34, 148(in Chinese).  doi: 10.3969/j.issn.0253-2654.2007.01.035

    57. [57]

      Ochsner, U. A.; Fiechter, A.; Reiser, J. J. Biol. Chem. 1994, 269, 19787.

    58. [58]

      Rahim, R.; Ochsner, U. A.; Olvera, C.; Graninger, M.; Messner, P.; Lam, J. S.; Soberón-Chávez, G. Mol. Microbiol. 2001, 40, 708.

    59. [59]

      Lang, S.; Wullbrandt, D. Appl. Microbiol. Biotechnol. 1999, 51, 22.

    60. [60]

      Grzegorzewicz, A. E.; Ma, Y.; Jones, V.; Crick, D.; Liav, A.; McNeil, M. R. Microbiology 2008, 154, 3724.

    61. [61]

      Mills, J. A.; Motichka, K.; Jucker, M.; Wu, H. P.; Uhlik, B. C.; Stern, R. J.; Scherman, M. S.; Vissa, V. D.; Pan, F.; Kundu, M.; Ma, Y. F.; McNeil, M. J. Biol. Chem. 2004, 279, 43540.

    62. [62]

      Harrus, D.; Kellokumpu, S.; Glumoff, T. Cell Mol. Life. Sci. 2018, 75, 833.

    63. [63]

      Steiner, K.; Hagelueken, G.; Messner, P.; Schäffer, C.; Naismith, J. H. J. Mol. Biol. 2010, 397, 436.  doi: 10.1016/j.jmb.2010.01.035

    64. [64]

      Isiorho, E. A.; Liu, H. W.; Keatinge-Clay, A. T. Biochemistry 2012, 51, 1213.

    65. [65]

      Waldron, C.; Matsushima, P.; Rosteck, P. R. Jr.; Broughton, M. C.; Turner, J.; Madduri, K.; Crawford, K. P.; Merlo, D. J.; Baltz, R. H. Chem. Biol. 2001, 8, 487.

    66. [66]

      Zhao, Y.; Thorson, J. S. J. Org. Chem. 1998, 63, 7568.  doi: 10.1021/jo981265n

    67. [67]

      Sun, Q.; Li, X. J.; Sun, J.; Gong, S. S.; Liu, G.; Liu, G. D. Tetrahedron 2014, 70, 294.  doi: 10.1016/j.tet.2013.11.059

    68. [68]

      Marumo, K.; Lindqvist, L.; Verma, N.; Weintraub, A.; Reeves, P. R.; Lindberg, A. A. FEBS J. 1992, 204, 539.

    69. [69]

      Schnaitman, C. A.; Klena, J. D. Microbiol. Rev. 1993, 57, 655.

    70. [70]

      Stein, A.; Kula, M. R.; Elling, L. Glycoconjugate J. 1998, 15, 139.  doi: 10.1023/A:1006912121278

    71. [71]

      Graninger, M.; Nidetzky, B.; Heinrichs, D. E.; Whitfield, C.; Messner, P. J. Biol. Chem. 1999, 274, 25069.

    72. [72]

      Usadel, B.; Kuschinsky, A. M.; Rosso, M. G.; Eckermann, N.; Pauly, M. Plant Physiol. 2004, 134, 286.  doi: 10.1104/pp.103.034314

    73. [73]

      Oka, T.; Nemoto, T.; Jigami, Y. J. Biol. Chem. 2007, 282, 5389.  doi: 10.1074/jbc.M610196200

    74. [74]

      Kim, B. G.; Jung, W. D.; Ahn, J. H. J. Plant Biol. 2013, 56, 7.  doi: 10.1007/s12374-012-0333-2

    75. [75]

      Yin, S.; Liu, M.; Kong, J. Q. Plant Physiol. Biochem. 2016, 109, 536.  doi: 10.1016/j.plaphy.2016.10.029

    76. [76]

      Martinez, V.; Ingwers, M.; Smith, J.; Glushka, J.; Yang, T.; Bar-Peled, M. J. Biol. Chem. 2012, 287, 879.

    77. [77]

      Gantt, R. W.; Peltier-Pain, P.; Cournoyer, W. J.; Thorson, J. S. Nat. Chem. Biol. 2011, 7, 685.  doi: 10.1038/nchembio.638

    78. [78]

      Erijman, A.; Aizner, Y.; Shifman, J. M. Biochemistry. 2011, 50, 602.

    79. [79]

      Franco, O. L. FEBS Lett. 2011, 585, 995.

    80. [80]

      Mo, T.; Liu, X.; Liu, Y. Y.; Wang, X. H.; Zhang, L.; Wang, J.; Zhang, Z. X.; Shi, S. P.; Tu, P. F. RSC Adv. 2016, 6, 84616.  doi: 10.1039/C6RA16251G

    81. [81]

      Parajuli, P.; Pandey, R. P.; Trang, N. T. H.; Oh, T. J.; Sohng, J. K. Carbohydr. Res. 2015, 418, 13.  doi: 10.1016/j.carres.2015.09.010

    82. [82]

      Parajuli, P.; Pandey R. P.; Darsandhari, S.; Yong, I. P.; Sohng, J. K. J. Carbohydr. Chem. 2016, 35, 367.

    83. [83]

      Ohashi, T.; Hasegawa, Y.; Misaki, R.; Fujiyama, K. Appl. Microbiol. Biotechnol. 2016, 100, 687.

    84. [84]

      Pandey, R. P.; Parajuli, P.; Gurung, R. B.; Sohng, J. K. Enzyme Microb. Tech. 2016, 91, 26.

    85. [85]

      Yoshikuni, Y.; Ferrin, T. E.; Keasling, J. D. Nature 2006, 440, 1078.

    86. [86]

      Kim, B. G.; Kim, H. J.; Ahn, J. H. J. Agric. Food Chem. 2012, 60, 11143.  doi: 10.1021/jf302123c

    87. [87]

      Yang, S. M.; Han, S. H.; Kim, B. G.; Ahn, J. H. J. Ind. Microbiol. Biotechnol. 2014, 41, 1311.

    88. [88]

      Roepke, J.; Bozzo, G. G. ChemBioChem 2013, 14, 2418.  doi: 10.1002/cbic.v14.18

    89. [89]

      Kim, H. J.; Kim, B. G.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2013, 97, 5275.

    90. [90]

      Thuan, N. H.; Malla, S.; Trung, N. T.; Dhakal, D.; Pokhrel, A. R.; Chu, L. L.; Sohng, J. K. World J. Microbiol. Biotechnol. 2017, 33, 36.  doi: 10.1007/s11274-017-2208-7

    91. [91]

      Parajuli, P.; Pandey, R. P.; Trang, N. T.; Chaudhary, A. K.; Sohng, J. K. Microb. Cell Fact. 2015, 14, 76.

    92. [92]

      Frydman, A. Weisshaus, O.; Huhman, D. V.; Sumner, L. W.; Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. J. Agric. Food Chem. 2005, 53, 9708.

    93. [93]

      Gong, Z. J.; Peng, Y. F.; Zhang, Y. T.; Song, G. T.; Chen, W. J. Jia, S. R.; Wang, Q. H. Chin. J. Biotechnol. 2015, 31, 1050(in Chinese)

    94. [94]

      Du, J.; Zhang, A.; Hao, J.; Wang, J. Biotechnol. Lett. 2017, 39, 1041.

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    8. [8]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(214)
  • Abstract views(7610)
  • HTML views(2670)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return