Citation: Jin Wenbing, Yuan Hua, Tang Gongli. Strategies for Construction of Cyclopropanes in Natural Products[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2324-2334. doi: 10.6023/cjoc201805059 shu

Strategies for Construction of Cyclopropanes in Natural Products

  • Corresponding author: Tang Gongli, gltang@sioc.ac.cn
  • Received Date: 31 May 2018
    Revised Date: 26 June 2018
    Available Online: 24 September 2018

    Fund Project: the Science and Technology Commission of Shanghai Municipality 15ZR1449400Project supported by the National Natural Science Foundation of China (No. 21502217) and the Science and Technology Commission of Shanghai Municipality (No. 15ZR1449400)the National Natural Science Foundation of China 21502217

Figures(20)

  • Cyclopropane-containing natural products frequently possess excellent biological activities, and may be developed as drug leads. Although the inherent strain of the cyclopropane greatly challenges both chemical synthesis and biosynthesis, great advances have been made for the construction of the cyclopropane in natural products by chemical synthesis owing to the importance of this kind of compounds. Many enzymes responsible for cyclopropanation have also been unraveled. This review summarizes the cyclopropanation strategies in chemical synthesis and biosynthesis. The strategies used in chemical synthesis mainly consist of three classes:(ⅰ) a carbene involved mechanism, (ⅱ) an SN2 reaction mechanism, and (ⅲ) cycloisomerization. The strategies discovered in nature are reviewed on the basis of the carbon state involved, including (ⅰ) a carbocation, (ⅱ) a carbanion, and (ⅲ) a carbon radical. Chemical synthesis and biosynthesis are mutually simulative because the strategies developed in chemical synthesis may inspire enzymologists to discover and design new biochemical reactions and vice versa.
  • 加载中
    1. [1]

      Freund, A. J. Prakt. Chem. 1882, 26, 367.  doi: 10.1002/(ISSN)1521-3897

    2. [2]

      Staudinger, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 177.  doi: 10.1002/hlca.19240070124

    3. [3]

      Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625.  doi: 10.1021/cr0100188

    4. [4]

      Pandit, J.; Danley, D. E.; Schulte, G. K.; Mazzalupo, S.; Pauly, T. A.; Hayward, C. M.; Hamanaka, E. S.; Thompson, J. F.; Harwood, H. J. J. Biol. Chem. 2000, 275, 30610.

    5. [5]

      Capitani, G.; Hohenester, E.; Feng, L.; Storici, P.; Kirsch, J. F.; Jansonius, J. N. J. Mol. Biol. 1999, 294, 745.
       

    6. [6]

      Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Predolini, F.; Pettinella, F.; Masserdotti, A.; Zammataro, L.; Altwerger, G.; Buza, N.; Hui, P.; Wong, S.; Litkouhi, B.; Ratner, E.; Silasi, D. A.; Azodi, M.; Schwartz, P. E.; Santin, A. D. Clin. Cancer Res. 2017, 23, 5836.  doi: 10.1158/1078-0432.CCR-16-2862

    7. [7]

      Tietze, L. F.; Krewer, B. Anticancer Agents Med. Chem. 2009, 9, 304.

    8. [8]

      Sievers, E. L.; Senter, P. D. Annu. Rev. Med. 2013, 64, 15.

    9. [9]

      Wipf, P.; Reeves, J. T.; Day, B. W. Curr. Pharm. Des. 2004, 10, 1417.

    10. [10]

      Hiratsuka, T.; Suzuki, H.; Kariya, R.; Seo, T.; Minami, A.; Oikawa, H. Angew. Chem., Int. Ed. 2014, 53, 5423.

    11. [11]

      Silverman, R. B.; Zieske, P. A. Biochemistry 1985, 24, 2128.
       

    12. [12]

      Wentland, M. P.; Lu, Q.; Lou, R.; Bu, Y.; Knapp, B. I.; Bidlack, J. M. Bioorg. Med. Chem. Lett. 2005, 15, 2107.  doi: 10.1016/j.bmcl.2005.02.032

    13. [13]

      Talele, T. T. J. Med. Chem. 2016, 59, 8712.

    14. [14]

      Lászlò, K.; Barbara, C. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, Burlington, 2005, p. 412.

    15. [15]

      Parthasarathy, G.; Eggert, U.; Kalesse, M. Org. Lett. 2016, 18, 2320.
       

    16. [16]

      Jin, S.; Gong, J.; Qin, Y. Angew. Chem., Int. Ed. 2015, 54, 2228.

    17. [17]

      Silberrad, O. R.; Roy, C. S. J. Chem. Soc. 1906, 89, 179.

    18. [18]

      Nozaki, H.; Moriuti, S.; Yamabe, M.; Noyori, R. Tetrahedron Lett. 1966, 7, 59.

    19. [19]

      Moser, W. R. J. Am. Chem. Soc. 1969, 91, 1141.  doi: 10.1021/ja01033a018

    20. [20]

      Paulissen, R.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1972, 13, 1465.

    21. [21]

      Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1973, 14, 2233.  doi: 10.1016/S0040-4039(01)87603-6

    22. [22]

      Hubert, A. J.; Noels, A. F.; Anciaux, A. J.; Teyssie, P. Synthesis 1976, 600.

    23. [23]

      Yuan, C. C.; Du, B. A.; Yang, L.; Liu, B. J. Am. Chem. Soc. 2013, 135, 9291.
       

    24. [24]

      Doering, W.; Hoffmann, A. K. J. Am. Chem. Soc. 1954, 76, 6162.  doi: 10.1021/ja01652a087

    25. [25]

      Pan, S. Y.; Xuan, J.; Gao, B. L.; Zhu, A.; Ding, H. F. Angew. Chem., Int. Ed. 2015, 54, 6905.

    26. [26]

      Tichenor, M. S.; Kastrinsky, D. B.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 8396.
       

    27. [27]

      Tichenor, M. S.; Trzupek, J. D.; Kastrinsky, D. B.; Shiga, F.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 15683.

    28. [28]

      Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136.  doi: 10.1021/ja0619455

    29. [29]

      Strickler, H.; Davis, J. B.; Ohloff, G. Helv. Chim. Acta 1976, 59, 1328.  doi: 10.1002/(ISSN)1522-2675

    30. [30]

      Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328.

    31. [31]

      Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132.  doi: 10.1002/1521-3773(20020617)41:12<2132::AID-ANIE2132>3.0.CO;2-S

    32. [32]

      Lemiere, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A. L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009, 131, 2993.  doi: 10.1021/ja808872u

    33. [33]

      Michels, T. D.; Dowling, M. S.; Vanderwal, C. D. Angew. Chem., Int. Ed. 2012, 51, 7572.  doi: 10.1002/anie.201203147

    34. [34]

      Homs, A.; Muratore, M. E.; Echavarren, A. M. Org. Lett. 2015, 17, 461.  doi: 10.1021/ol503531n

    35. [35]

      Hodgson, D. M.; Chung, Y. K.; Paris, J. M. J. Am. Chem. Soc. 2004, 126, 8664.  doi: 10.1021/ja047346k

    36. [36]

      Hodgson, D. M.; Chung, Y. K.; Nuzzo, I.; Freixas, G.; Kulikiewicz, K. K.; Cleator, E.; Paris, J. M. J. Am. Chem. Soc. 2007, 129, 4456.

    37. [37]

      Hodgson, D. M.; Salik, S.; Fox, D. J. J. Org. Chem. 2010, 75, 2157.  doi: 10.1021/jo9022974

    38. [38]

      Büchner, E.; Perkel, L. Ber. Dtsch. Chem. Ges. 1903, 36, 3774.  doi: 10.1002/(ISSN)1099-0682

    39. [39]

      Buchner, E.; Curtius, T. Ber. Dtsch. Chem. Ges. 1885, 18, 2377.

    40. [40]

      Rinehart, K. L.; Van Auken, T. V. J. Am. Chem. Soc. 1960, 82, 5251.

    41. [41]

      Kirillova, M. S.; Muratore, M. E.; Dorel, R.; Echavarren, A. M. J. Am. Chem. Soc. 2016, 138, 3671.  doi: 10.1021/jacs.6b01428

    42. [42]

      Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813.

    43. [43]

      Kim, K.; Cha, J. K. Angew. Chem., Int. Ed. 2009, 48, 5334.  doi: 10.1002/anie.200901669

    44. [44]

      Gaich, T.; Mulzer, J. J. Am. Chem. Soc. 2009, 131, 452.  doi: 10.1021/ja8083048

    45. [45]

      Walsh, C. T. ACS Chem. Biol. 2007, 2, 296.

    46. [46]

      Thibodeaux, C. J.; Chang, W. C.; Liu, H. W. Chem. Rev. 2012, 112, 1681.  doi: 10.1021/cr200073d

    47. [47]

      Liao, R. Z.; Georgieva, P.; Yu, J. G.; Himo, F. Biochemistry 2011, 50, 1505.

    48. [48]

      Zha, L.; Jiang, Y.; Henke, M. T.; Wilson, M. R.; Wang, J. X.; Kelleher, N. L.; Balskus, E. P. Nat. Chem. Biol. 2017, 13, 1063.  doi: 10.1038/nchembio.2448

    49. [49]

      Frederic, H.; Vaillancourt, E. Y.; Vosburg, D. A.; O'Connor, S. E.; Walsh, C. T. Nature 2005, 436, 1191.

    50. [50]

      Kelly, W. L.; Boyne, M. T.; Yeh, E.; Vosburg, D. A.; Galoni, D. P.; Kelleher, N. L.; Walsh, C. T. Biochemistry 2007, 46, 359.

    51. [51]

      Jiang, W.; Heemstra, J. R.; Forseth, R. R.; Neumann, C. S.; Manaviazar, S.; Schroeder, F. C.; Hale, K. J.; Walsh, C. T. Biochemistry 2011, 50, 6063.  doi: 10.1021/bi200656k

    52. [52]

      Gu, L.; Wang, B.; Kulkarni, A.; Geders, T. W.; Grindberg, R. V.; Gerwick, L.; Hakansson, K.; Wipf, P.; Smith, J. L.; Gerwick, W. H.; Sherman, D. H. Nature 2009, 459, 731.

    53. [53]

      Wu, S.; Jian, X. H.; Yuan, H.; Jin, W. B.; Yin, Y.; Wang, L. Y.; Zhao, J.; Tang, G. L. ACS Chem. Biol. 2017, 12, 1603.  doi: 10.1021/acschembio.7b00302

    54. [54]

      Jin, W. B.; Wu, S.; Jian, X. H.; Yuan, H.; Tang, G. L. Nat. Commun. 2018, 9, 2771.  doi: 10.1038/s41467-018-05217-1

    55. [55]

      Wang, X.; Wu, S.; Jin, W.; Xu, B.; Tang, G.; Yuan, H. Acta Biochim. Biophys. Sin. 2018, 50, 516.

    56. [56]

      Jakubczyk, D.; Caputi, L.; Hatsch, A.; Nielsen, C. A.; Diefenbacher, M.; Klein, J.; Molt, A.; Schröder, H.; Cheng, J. Z.; Naesby, M.; O'Connor, S. E. Angew. Chem., Int. Ed. 2015, 54, 5117.  doi: 10.1002/anie.v54.17

    57. [57]

      Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.  doi: 10.1126/science.1231434

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    14. [14]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(56)
  • Abstract views(2711)
  • HTML views(700)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return