Citation: Jiang Yuanyuan, Li Shengying. Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2307-2323. doi: 10.6023/cjoc201805055 shu

Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis

  • Corresponding author: Li Shengying, lishengying@qibebt.ac.cn
  • Received Date: 30 May 2018
    Revised Date: 29 June 2018
    Available Online: 24 September 2018

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017ZB0207the National Natural Science Foundation of China 21472204Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017ZB0207) and the National Natural Science Foundation of China (Nos. 81741115, 21472204)the National Natural Science Foundation of China 81741115

Figures(14)

  • Cytochrome P450 enzymes are widely distributed in nature, which mainly participate in xenobiotics metabolism and natural product biosynthesis. These enzymes are able to recognize various substrates to produce many useful oxidative products through diverse reaction types. P450 enzymes can catalyze selective oxidation of C-H bonds in their substrates under mild conditions. Therefore, a lot of P450 enzymes have been applied in the production of fine chemicals, drugs and chemical intermediates for quite a long time. With the development of protein engineering, redox partner engineering, substrate engineering, metabolic engineering and synthetic biology, it has become possible to obtain the P450 biocatalysts with the desired properties such as high activity, the substrate specificity of interest, and great selectivity to meet the industrial requirements, through rational design and direct evolution of P450 enzymes. Thus, the application scope of P450 enzymes in biosynthesis and organic synthesis has been expanded greatly. The types of reactions that can be catalyzed by P450 enzymes, and the strategies to broaden the reaction scope and to enhance the catalytic efficiency and selectivity are summarized. Finally, the challenges and prospects in the application of cytochrome P450 enzymes in biosynthesis and organic synthesis are discussed.
  • 加载中
    1. [1]

      (a) Urlacher, V. B.; Girhard, M. Trends Biotechnol. 2012, 30, 26.
      (b) Keasling, J. D.; Mendoza, A.; Baran, P. S. Nature 2012, 492, 188.

    2. [2]

      Guengerich, F. P. Chem. Res. Toxicol. 2001, 14, 611.

    3. [3]

      Sakaki, T. Biol. Pharm. Bull. 2012, 35, 844.
       

    4. [4]

      Mcintosh, J. A.; Farwell, C. C.; Arnold, F. H. Curr. Opin. Chem. Biol. 2014, 19, 126.  doi: 10.1016/j.cbpa.2014.02.001

    5. [5]

      Arnold, F. H. Angew. Chem., Int. Ed. 2017. 56, 4143.

    6. [6]

      Denisov, I. G.; Maris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253.  doi: 10.1021/cr0307143

    7. [7]

      (a) Lu, A. Y.; Coon, M. J. J. Biol. Chem. 1968, 243, 1331.
      (b) Hildebrandt, A.; Remmer, H.; Estabrook, R. W. Biochem. Biophys. Res. Commun. 1968, 30, 607.

    8. [8]

      Li, Z.; Zhang, W.; Li, S. Y. Acta Microbiol. Sin. 2016, 56, 496(in Chinese).
       

    9. [9]

      Nebert, D. W.; Adesnik, M.; Coon, M. J.; Estabrook, R. W.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Kemper, B.; Levin, W. DNA 1987, 6, 1.

    10. [10]

      Ruettinger, R. T.; Fulco, A. J. J. Biol. Chem. 1981, 256, 5728.
       

    11. [11]

      Daiber, A.; Shoun, H.; Ullrich, V. J. Inorg. Biochem. 2005, 99, 185.

    12. [12]

      Hasemann, C. A.; Kurumbail, R. G.; Boddupalli, S. S.; Peterson, J. A.; Deisenhofer, J. Structure 1995, 3, 41.  doi: 10.1016/S0969-2126(01)00134-4

    13. [13]

      Presnell, S. R.; Cohen, F. E. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 6592.
       

    14. [14]

      Gotoh, O. J. Biol. Chem. 1992, 267, 83.

    15. [15]

      Pylypenko, O.; Schlichting, I. Annu. Rev. Biochem. 2004, 73, 991.  doi: 10.1146/annurev.biochem.73.011303.073711

    16. [16]

      (a) Conrad, H. E.; Lieb, K.; Gunsalus, I. C. J. Biol. Chem. 1965, 240, 4029.
      (b) Katagiri, M.; Ganguli, B. N.; Gunsalus, I. C. J. Biol. Chem. 1968, 243, 3543.

    17. [17]

      (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
      (b) Groves, J. T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3569.
      (c) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2010, 110, 949.
      (d) Guengerich, F. P. J. Biochem. Mol. Toxicol. 2007, 21, 163.

    18. [18]

      Montellano, P. O. D. Cytochrome P450:Structure, Mechanism, and Biochemistry, 4th ed., Springer International Publishing, Switzerland, 2015, p. 1.

    19. [19]

      Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.; Cardayre, S. B. D.; Schirmer, A. Appl. Environ. Microbiol. 2011, 77, 1718.

    20. [20]

      (a) Cryle, M. J.; De Voss, J. J. Angew. Chem., Int. Ed. 2006, 45, 8221.
      (b) Jin, S.; Makris, T. M.; Bryson, T. A.; Sligar, S. G.; Dawson, J. H. J. Am. Chem. Soc. 2003, 125, 3406.

    21. [21]

      Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Bhumit, P.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Rosemary, L. Nat. Chem. Biol. 2012, 8, 814.

    22. [22]

      Zhang, X.; Li, S. Nat. Prod. Rep. 2017, 34, 1061.  doi: 10.1039/C7NP00028F

    23. [23]

      Zhu, G. D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877.  doi: 10.1021/cr00038a007

    24. [24]

      Kawauchi, H.; Sasaki, J.; Adachi, T.; Hanada, K.; Beppu, T.; Horinouchi, S. Biochim. Biophys. Acta 1994, 1219, 179.  doi: 10.1016/0167-4781(94)90266-6

    25. [25]

      Yasutake, Y.; Fujii, Y.; Cheon, W. K.; Arisawa, A.; Tamura, T. Acta Crystallogr. 2009, 65, 372.

    26. [26]

      Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.  doi: 10.1021/ja0303790

    27. [27]

      Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 117, 4097.

    28. [28]

      Du, L.; Dong, S.; Zhang, X.; Jiang, C.; Chen, J.; Yao, L.; Wang, X.; Wan, X.; Liu, X.; Wang, X.; Huang, S.; Cui, Q.; Feng, Y.; Liu, S.; Li, S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E5129.

    29. [29]

      Woodley, J. M. Trends Biotechnol. 2008, 26, 321.  doi: 10.1016/j.tibtech.2008.03.004

    30. [30]

      Ogura, H.; Nishida, C. R.; Hoch, U. R.; Perera, R.; Dawson, J. H.; Pr, O. D. M. Biochemistry 2004, 43, 14712.

    31. [31]

      (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
      (b) Islam, S. M.; Roy, A. S.; Mondal, P.; Mobarok, M.; Roy, B.; Salam, N.; Paul, S.; Mondal, S. Monatsh. Chem. 2012, 143, 815.

    32. [32]

      Kubo, T.; Peters, M. W.; Meinhold, P.; Arnold, F. H. Chemistry 2006, 12, 1216.

    33. [33]

      (a) Podust, L. M.; Sherman, D. H. Nat. Prod. Rep. 2012, 29, 1251.
      (b) Li, S.; Tietz, D. R.; Rutaganira, F. U.; Kells, P. M.; Anzai, Y.; Kato, F.; Pochapsky, T. C.; Sherman, D. H.; Podust, L. M. J. Biol. Chem. 2012, 287, 37880.

    34. [34]

      Anzai, Y.; Li, S.; Chaulagain, M. R.; Kinoshita, K.; Kato, F.; Montgomery, J.; Sherman, D. H. Chem. Biol. 2008, 15, 950.  doi: 10.1016/j.chembiol.2008.07.014

    35. [35]

      Chooi, Y. H.; Hong, Y. J.; Cacho, R. A.; Tantillo, D. J.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 16805.  doi: 10.1021/ja408966t

    36. [36]

      Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.

    37. [37]

      Halo, L. M.; Heneghan, M. N.; Yakasai, A. A.; Song, Z.; Williams, K.; Bailey, A. M.; Cox, R. J.; Lazarus, C. M.; Simpson, T. J. J. Am. Chem. Soc. 2008, 130, 17988.  doi: 10.1021/ja807052c

    38. [38]

      Tsunematsu, Y.; Ishikawa, N.; Wakana, D.; Goda, Y.; Noguchi, H.; Moriya, H.; Hotta, K.; Watanabe, K. Nat. Chem. Biol. 2013, 9, 818.

    39. [39]

      Guengerich, F. P.; Munro, A. W. J. Biol. Chem. 2013, 288, 17065.

    40. [40]

      Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194.
       

    41. [41]

      Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chávez, M. L.; Huang, F. C.; Kutchan, T. M. J. Biol. Chem. 2009, 284, 24432.

    42. [42]

      Ikezawa, N.; Iwasa, K.; Sato, F. J. Biol. Chem. 2008, 283, 8810.
       

    43. [43]

      Mazzaferro, L. S.; Hüttel, W.; Fries, A.; Müller, M. J. Am. Chem. Soc. 2015, 137, 12289.  doi: 10.1021/jacs.5b06776

    44. [44]

      Kraus, P. F.; Kutchan, T. M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2071.
       

    45. [45]

      Irmler, S.; Schroder, G.-P. B.; Crouch, N. P.; Hotze, M.; Schmidt, J. Plant J. 2000, 24, 797.

    46. [46]

      Lin, H. C.; Chooi, Y. H.; Dhingra, S.; Xu, W.; Calvo, A. M.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 4616.

    47. [47]

      Akashi, T.; Aoki, T.; Ayabe, S. FEBS Lett. 1998, 431, 287.

    48. [48]

      Li, R.; Reed, D. W.; Liu, E.; Nowak, J.; Pelcher, L. E.; Page, J. E.; Covello, P. S. Chem. Biol. 2006, 13, 513.
       

    49. [49]

      (a) Brosen, K. Drug Metabol. Pers. Ther. 2015, 30, 147.
      (b) Morinobu, S.; Tanaka, T.; Kawakatsu, S.; Totsuka, S.; Koyama, E.; Chiba, K.; Ishizaki, T.; Kubota, T. Psychiatry Clin. Neurosci. 1997, 51, 253.

    50. [50]

      Yu, F.; Li, M.; Xu, C.; Wang, Z.; Zhou, H.; Yang, M.; Chen, Y.; Tang, L.; He, J. PloS One 2013, 8, e81526.
       

    51. [51]

      Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmannchen, S.; Arnold, F. H. Nat. Chem. 2017, 9, 629.
       

    52. [52]

      Mcintosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.

    53. [53]

      Hammer, S. C.; Kubik, G.; Watkins, E.; Huang, S.; Minges, H.; Arnold, F. H. Science 2017, 358, 215.  doi: 10.1126/science.aao1482

    54. [54]

      Li, A.; Wang, B.; Ilie, A.; Dubey, K. D.; Bange, G.; Korendovych, I. V.; Shaik, S.; Reetz, M. T. Nat. Commun. 2017, 8, 14876.  doi: 10.1038/ncomms14876

    55. [55]

      Kan, S. B.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.  doi: 10.1126/science.aah6219

    56. [56]

      (a) Mcreynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 35, 2239.
      (b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.

    57. [57]

      Ma, N.; Chen, Z.; Chen, J.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.

    58. [58]

      Bornscheuer, U. T. Angew. Chem., Int. Ed. 1998, 37, 65.

    59. [59]

      Yang, J.; Ruff, A. J.; Arlt, M.; Schwaneberg, U. Biotechnol. Bioeng. 2017, 114, 1921.

    60. [60]

      Georgescu, R.; Bandara, G.; Sun, L. Methods Mol. Biol. 2003, 231, 75.

    61. [61]

      Crameri, A.; Raillard, S. A.; Bermudez, E.; Stemmer, W. P. Nature 1998, 391, 288.  doi: 10.1038/34663

    62. [62]

      Reetz, M. T.; Carballeira, J. D. Nat. Protoc. 2007, 2, 891.  doi: 10.1038/nprot.2007.72

    63. [63]

      Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. Angew. Chem., Int. Ed. 2010, 117, 4264.

    64. [64]

      Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.

    65. [65]

      Warman, A. J.; Roitel, O.; Neeli, R.; Girvan, H. M.; Seward, H. E.; Murray, S. A.; Mclean, K. J.; Joyce, M. G.; Toogood, H.; Holt, R. A. Biochem. Soc. Trans. 2005, 33, 747.
       

    66. [66]

      Kille, S.; Zilly, F. E.; Acevedo, J. P.; Reetz, M. T. Nat. Chem. 2011, 3, 738.

    67. [67]

      Chen, K.; Huang, X.; Kan, S.; Zhang, R. K.; Arnold, F. H. Science 2018, 360, 71.
       

    68. [68]

      Wong, L. L.; Whitehouse, C. J. C.; Yang, W.; Yorke, J. A.; Blanford, C. F.; Bell, S. G.; Bartlam, M.; Rao, Z. Drug Metab. Rev. 2010, 11, 2549.
       

    69. [69]

      Seifert, A.; Vomund, S.; Grohmann, K.; Kriening, S.; Urlacher, V. B.; Laschat, S.; Pleiss, J. ChemBioChem 2009, 10, 1426.

    70. [70]

      Sherman, D. H.; Li, S.; Yermalitskaya, L. V.; Kim, Y.; Smith, J. A.; Waterman, M. R.; Podust, L. M. J. Biol. Chem. 2006, 281, 26289.

    71. [71]

      Vermeulen, N. P. E.; Graaf, C. D.; Stjernschantz, E.; Feenstra, A.; Oostenbrink, B. C. International Society for the Study of Xenobiotics Meeting, Sendai, Japan, 2007, pp. 223~232.

    72. [72]

      Morigasaki, S.; Takata, K.; Sanada, Y.; Wada, K.; Yee, B. C.; Shin, S.; Buchanan, B. B. Arch. Biochem. Biophys. 1990, 283, 75.
       

    73. [73]

      Sibbesen, O.; De Voss, J. J.; Montellano, P. R. J. Biol. Chem. 1996, 271, 22462.

    74. [74]

      Lambeth, J. D.; Seybert, D. W.; Kamin, H. J. Biol. Chem. 1980, 255, 4667.
       

    75. [75]

      Neunzig, I.; Widjaja, M.; Peters, F. T.; Maurer, H. H.; Hehn, A.; Bourgaud, F.; Bureik, M. Appl. Biochem. Biotechnol. 2013, 170, 1751.  doi: 10.1007/s12010-013-0303-2

    76. [76]

      Ma, L.; Du, L.; Chen, H.; Sun, Y.; Huang, S.; Zheng, X.; Kim, E. S.; Li, S. Appl. Environ. Microbiol. 2015, 81, 6268.

    77. [77]

      Zhang, W.; Liu, Y.; Yan, J.; Cao, S.; Bai, F.; Yang, Y.; Huang, S.; Yao, L.; Anzai, Y.; Kato, F.; Podust, L. M.; Sherman, D. H.; Li, S. J. Am. Chem. Soc. 2014, 136, 3640.
       

    78. [78]

      Liu, Y.; Wang, C.; Yan, J.; Zhang, W.; Guan, W.; Lu, X.; Li, S. Biotechnol. Biofuels 2014, 256, 130.

    79. [79]

      Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J. Nature 2006, 440, 940.

    80. [80]

      (a) Chefson, A.; Auclair, K. Mol. BioSyst. 2006, 2, 462.
      (b) Schewe, H.; Holtmann, D.; Schrader, J. Appl. Microbiol. Biotechnol. 2009, 83, 849.

    81. [81]

      Shrestha, P.; Oh, T. J.; Sohng, J. K. Biotechnol. Lett. 2008, 30, 1101.

    82. [82]

      Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.
       

    83. [83]

      Narayan, A. R.; Jiménez-Osés, G.; Liu, P; Negretti, S.; Zhao, W; Gilbert, M. M.; Ramabhadran, R. O.; Yang, Y. F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.

    84. [84]

      Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Nature 2016, 534, 534.

    85. [85]

      Hansen, D. A.; Rath, C. M.; Eisman, E. B.; Narayan, A. R.; Kittendorf, J. D.; Mortison, J. D.; Yoon, Y. J.; Sherman, D. H. J. Am. Chem. Soc. 2013, 135, 11232.

    86. [86]

      (a) Perez, D. I.; Grau, M. M.; Arends, I. W. C. E.; Hollmann, F. Chem. Commun. 2010, 41, 6848.
      (b) Girhard, M.; Kunigk, E.; Tihovsky, S.; Shumyantseva, V. V.; Urlacher, V. B. Biotechnol. Appl. Biochem. 2013, 60, 111.
      (c) Paul, C. E.; Churakova, E.; Maurits, E.; Girhard, M.; Urlacher, V. B.; Hollmann, F. Biorg. Med. Chem. 2014, 22, 5692.

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    3. [3]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    4. [4]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    5. [5]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    6. [6]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Zhen Shen Yi Wang Chen Lin Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083

    11. [11]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Yansong Xiao Yi Huang Xingxing Ma Qiuling Song . The Matteson Reaction in Organic Synthesis: From Fundamentals to Frontiers. University Chemistry, 2025, 40(10): 114-120. doi: 10.12461/PKU.DXHX202411023

    16. [16]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    17. [17]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    18. [18]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    19. [19]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(894)
  • Abstract views(21242)
  • HTML views(8896)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return