Citation: Jiang Yuanyuan, Li Shengying. Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2307-2323. doi: 10.6023/cjoc201805055 shu

Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis

  • Corresponding author: Li Shengying, lishengying@qibebt.ac.cn
  • Received Date: 30 May 2018
    Revised Date: 29 June 2018
    Available Online: 24 September 2018

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017ZB0207the National Natural Science Foundation of China 21472204Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017ZB0207) and the National Natural Science Foundation of China (Nos. 81741115, 21472204)the National Natural Science Foundation of China 81741115

Figures(14)

  • Cytochrome P450 enzymes are widely distributed in nature, which mainly participate in xenobiotics metabolism and natural product biosynthesis. These enzymes are able to recognize various substrates to produce many useful oxidative products through diverse reaction types. P450 enzymes can catalyze selective oxidation of C-H bonds in their substrates under mild conditions. Therefore, a lot of P450 enzymes have been applied in the production of fine chemicals, drugs and chemical intermediates for quite a long time. With the development of protein engineering, redox partner engineering, substrate engineering, metabolic engineering and synthetic biology, it has become possible to obtain the P450 biocatalysts with the desired properties such as high activity, the substrate specificity of interest, and great selectivity to meet the industrial requirements, through rational design and direct evolution of P450 enzymes. Thus, the application scope of P450 enzymes in biosynthesis and organic synthesis has been expanded greatly. The types of reactions that can be catalyzed by P450 enzymes, and the strategies to broaden the reaction scope and to enhance the catalytic efficiency and selectivity are summarized. Finally, the challenges and prospects in the application of cytochrome P450 enzymes in biosynthesis and organic synthesis are discussed.
  • 加载中
    1. [1]

      (a) Urlacher, V. B.; Girhard, M. Trends Biotechnol. 2012, 30, 26.
      (b) Keasling, J. D.; Mendoza, A.; Baran, P. S. Nature 2012, 492, 188.

    2. [2]

      Guengerich, F. P. Chem. Res. Toxicol. 2001, 14, 611.

    3. [3]

      Sakaki, T. Biol. Pharm. Bull. 2012, 35, 844.
       

    4. [4]

      Mcintosh, J. A.; Farwell, C. C.; Arnold, F. H. Curr. Opin. Chem. Biol. 2014, 19, 126.  doi: 10.1016/j.cbpa.2014.02.001

    5. [5]

      Arnold, F. H. Angew. Chem., Int. Ed. 2017. 56, 4143.

    6. [6]

      Denisov, I. G.; Maris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253.  doi: 10.1021/cr0307143

    7. [7]

      (a) Lu, A. Y.; Coon, M. J. J. Biol. Chem. 1968, 243, 1331.
      (b) Hildebrandt, A.; Remmer, H.; Estabrook, R. W. Biochem. Biophys. Res. Commun. 1968, 30, 607.

    8. [8]

      Li, Z.; Zhang, W.; Li, S. Y. Acta Microbiol. Sin. 2016, 56, 496(in Chinese).
       

    9. [9]

      Nebert, D. W.; Adesnik, M.; Coon, M. J.; Estabrook, R. W.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Kemper, B.; Levin, W. DNA 1987, 6, 1.

    10. [10]

      Ruettinger, R. T.; Fulco, A. J. J. Biol. Chem. 1981, 256, 5728.
       

    11. [11]

      Daiber, A.; Shoun, H.; Ullrich, V. J. Inorg. Biochem. 2005, 99, 185.

    12. [12]

      Hasemann, C. A.; Kurumbail, R. G.; Boddupalli, S. S.; Peterson, J. A.; Deisenhofer, J. Structure 1995, 3, 41.  doi: 10.1016/S0969-2126(01)00134-4

    13. [13]

      Presnell, S. R.; Cohen, F. E. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 6592.
       

    14. [14]

      Gotoh, O. J. Biol. Chem. 1992, 267, 83.

    15. [15]

      Pylypenko, O.; Schlichting, I. Annu. Rev. Biochem. 2004, 73, 991.  doi: 10.1146/annurev.biochem.73.011303.073711

    16. [16]

      (a) Conrad, H. E.; Lieb, K.; Gunsalus, I. C. J. Biol. Chem. 1965, 240, 4029.
      (b) Katagiri, M.; Ganguli, B. N.; Gunsalus, I. C. J. Biol. Chem. 1968, 243, 3543.

    17. [17]

      (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
      (b) Groves, J. T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3569.
      (c) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2010, 110, 949.
      (d) Guengerich, F. P. J. Biochem. Mol. Toxicol. 2007, 21, 163.

    18. [18]

      Montellano, P. O. D. Cytochrome P450:Structure, Mechanism, and Biochemistry, 4th ed., Springer International Publishing, Switzerland, 2015, p. 1.

    19. [19]

      Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.; Cardayre, S. B. D.; Schirmer, A. Appl. Environ. Microbiol. 2011, 77, 1718.

    20. [20]

      (a) Cryle, M. J.; De Voss, J. J. Angew. Chem., Int. Ed. 2006, 45, 8221.
      (b) Jin, S.; Makris, T. M.; Bryson, T. A.; Sligar, S. G.; Dawson, J. H. J. Am. Chem. Soc. 2003, 125, 3406.

    21. [21]

      Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Bhumit, P.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Rosemary, L. Nat. Chem. Biol. 2012, 8, 814.

    22. [22]

      Zhang, X.; Li, S. Nat. Prod. Rep. 2017, 34, 1061.  doi: 10.1039/C7NP00028F

    23. [23]

      Zhu, G. D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877.  doi: 10.1021/cr00038a007

    24. [24]

      Kawauchi, H.; Sasaki, J.; Adachi, T.; Hanada, K.; Beppu, T.; Horinouchi, S. Biochim. Biophys. Acta 1994, 1219, 179.  doi: 10.1016/0167-4781(94)90266-6

    25. [25]

      Yasutake, Y.; Fujii, Y.; Cheon, W. K.; Arisawa, A.; Tamura, T. Acta Crystallogr. 2009, 65, 372.

    26. [26]

      Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.  doi: 10.1021/ja0303790

    27. [27]

      Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 117, 4097.

    28. [28]

      Du, L.; Dong, S.; Zhang, X.; Jiang, C.; Chen, J.; Yao, L.; Wang, X.; Wan, X.; Liu, X.; Wang, X.; Huang, S.; Cui, Q.; Feng, Y.; Liu, S.; Li, S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E5129.

    29. [29]

      Woodley, J. M. Trends Biotechnol. 2008, 26, 321.  doi: 10.1016/j.tibtech.2008.03.004

    30. [30]

      Ogura, H.; Nishida, C. R.; Hoch, U. R.; Perera, R.; Dawson, J. H.; Pr, O. D. M. Biochemistry 2004, 43, 14712.

    31. [31]

      (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
      (b) Islam, S. M.; Roy, A. S.; Mondal, P.; Mobarok, M.; Roy, B.; Salam, N.; Paul, S.; Mondal, S. Monatsh. Chem. 2012, 143, 815.

    32. [32]

      Kubo, T.; Peters, M. W.; Meinhold, P.; Arnold, F. H. Chemistry 2006, 12, 1216.

    33. [33]

      (a) Podust, L. M.; Sherman, D. H. Nat. Prod. Rep. 2012, 29, 1251.
      (b) Li, S.; Tietz, D. R.; Rutaganira, F. U.; Kells, P. M.; Anzai, Y.; Kato, F.; Pochapsky, T. C.; Sherman, D. H.; Podust, L. M. J. Biol. Chem. 2012, 287, 37880.

    34. [34]

      Anzai, Y.; Li, S.; Chaulagain, M. R.; Kinoshita, K.; Kato, F.; Montgomery, J.; Sherman, D. H. Chem. Biol. 2008, 15, 950.  doi: 10.1016/j.chembiol.2008.07.014

    35. [35]

      Chooi, Y. H.; Hong, Y. J.; Cacho, R. A.; Tantillo, D. J.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 16805.  doi: 10.1021/ja408966t

    36. [36]

      Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.

    37. [37]

      Halo, L. M.; Heneghan, M. N.; Yakasai, A. A.; Song, Z.; Williams, K.; Bailey, A. M.; Cox, R. J.; Lazarus, C. M.; Simpson, T. J. J. Am. Chem. Soc. 2008, 130, 17988.  doi: 10.1021/ja807052c

    38. [38]

      Tsunematsu, Y.; Ishikawa, N.; Wakana, D.; Goda, Y.; Noguchi, H.; Moriya, H.; Hotta, K.; Watanabe, K. Nat. Chem. Biol. 2013, 9, 818.

    39. [39]

      Guengerich, F. P.; Munro, A. W. J. Biol. Chem. 2013, 288, 17065.

    40. [40]

      Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194.
       

    41. [41]

      Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chávez, M. L.; Huang, F. C.; Kutchan, T. M. J. Biol. Chem. 2009, 284, 24432.

    42. [42]

      Ikezawa, N.; Iwasa, K.; Sato, F. J. Biol. Chem. 2008, 283, 8810.
       

    43. [43]

      Mazzaferro, L. S.; Hüttel, W.; Fries, A.; Müller, M. J. Am. Chem. Soc. 2015, 137, 12289.  doi: 10.1021/jacs.5b06776

    44. [44]

      Kraus, P. F.; Kutchan, T. M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2071.
       

    45. [45]

      Irmler, S.; Schroder, G.-P. B.; Crouch, N. P.; Hotze, M.; Schmidt, J. Plant J. 2000, 24, 797.

    46. [46]

      Lin, H. C.; Chooi, Y. H.; Dhingra, S.; Xu, W.; Calvo, A. M.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 4616.

    47. [47]

      Akashi, T.; Aoki, T.; Ayabe, S. FEBS Lett. 1998, 431, 287.

    48. [48]

      Li, R.; Reed, D. W.; Liu, E.; Nowak, J.; Pelcher, L. E.; Page, J. E.; Covello, P. S. Chem. Biol. 2006, 13, 513.
       

    49. [49]

      (a) Brosen, K. Drug Metabol. Pers. Ther. 2015, 30, 147.
      (b) Morinobu, S.; Tanaka, T.; Kawakatsu, S.; Totsuka, S.; Koyama, E.; Chiba, K.; Ishizaki, T.; Kubota, T. Psychiatry Clin. Neurosci. 1997, 51, 253.

    50. [50]

      Yu, F.; Li, M.; Xu, C.; Wang, Z.; Zhou, H.; Yang, M.; Chen, Y.; Tang, L.; He, J. PloS One 2013, 8, e81526.
       

    51. [51]

      Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmannchen, S.; Arnold, F. H. Nat. Chem. 2017, 9, 629.
       

    52. [52]

      Mcintosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.

    53. [53]

      Hammer, S. C.; Kubik, G.; Watkins, E.; Huang, S.; Minges, H.; Arnold, F. H. Science 2017, 358, 215.  doi: 10.1126/science.aao1482

    54. [54]

      Li, A.; Wang, B.; Ilie, A.; Dubey, K. D.; Bange, G.; Korendovych, I. V.; Shaik, S.; Reetz, M. T. Nat. Commun. 2017, 8, 14876.  doi: 10.1038/ncomms14876

    55. [55]

      Kan, S. B.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.  doi: 10.1126/science.aah6219

    56. [56]

      (a) Mcreynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 35, 2239.
      (b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.

    57. [57]

      Ma, N.; Chen, Z.; Chen, J.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.

    58. [58]

      Bornscheuer, U. T. Angew. Chem., Int. Ed. 1998, 37, 65.

    59. [59]

      Yang, J.; Ruff, A. J.; Arlt, M.; Schwaneberg, U. Biotechnol. Bioeng. 2017, 114, 1921.

    60. [60]

      Georgescu, R.; Bandara, G.; Sun, L. Methods Mol. Biol. 2003, 231, 75.

    61. [61]

      Crameri, A.; Raillard, S. A.; Bermudez, E.; Stemmer, W. P. Nature 1998, 391, 288.  doi: 10.1038/34663

    62. [62]

      Reetz, M. T.; Carballeira, J. D. Nat. Protoc. 2007, 2, 891.  doi: 10.1038/nprot.2007.72

    63. [63]

      Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. Angew. Chem., Int. Ed. 2010, 117, 4264.

    64. [64]

      Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.

    65. [65]

      Warman, A. J.; Roitel, O.; Neeli, R.; Girvan, H. M.; Seward, H. E.; Murray, S. A.; Mclean, K. J.; Joyce, M. G.; Toogood, H.; Holt, R. A. Biochem. Soc. Trans. 2005, 33, 747.
       

    66. [66]

      Kille, S.; Zilly, F. E.; Acevedo, J. P.; Reetz, M. T. Nat. Chem. 2011, 3, 738.

    67. [67]

      Chen, K.; Huang, X.; Kan, S.; Zhang, R. K.; Arnold, F. H. Science 2018, 360, 71.
       

    68. [68]

      Wong, L. L.; Whitehouse, C. J. C.; Yang, W.; Yorke, J. A.; Blanford, C. F.; Bell, S. G.; Bartlam, M.; Rao, Z. Drug Metab. Rev. 2010, 11, 2549.
       

    69. [69]

      Seifert, A.; Vomund, S.; Grohmann, K.; Kriening, S.; Urlacher, V. B.; Laschat, S.; Pleiss, J. ChemBioChem 2009, 10, 1426.

    70. [70]

      Sherman, D. H.; Li, S.; Yermalitskaya, L. V.; Kim, Y.; Smith, J. A.; Waterman, M. R.; Podust, L. M. J. Biol. Chem. 2006, 281, 26289.

    71. [71]

      Vermeulen, N. P. E.; Graaf, C. D.; Stjernschantz, E.; Feenstra, A.; Oostenbrink, B. C. International Society for the Study of Xenobiotics Meeting, Sendai, Japan, 2007, pp. 223~232.

    72. [72]

      Morigasaki, S.; Takata, K.; Sanada, Y.; Wada, K.; Yee, B. C.; Shin, S.; Buchanan, B. B. Arch. Biochem. Biophys. 1990, 283, 75.
       

    73. [73]

      Sibbesen, O.; De Voss, J. J.; Montellano, P. R. J. Biol. Chem. 1996, 271, 22462.

    74. [74]

      Lambeth, J. D.; Seybert, D. W.; Kamin, H. J. Biol. Chem. 1980, 255, 4667.
       

    75. [75]

      Neunzig, I.; Widjaja, M.; Peters, F. T.; Maurer, H. H.; Hehn, A.; Bourgaud, F.; Bureik, M. Appl. Biochem. Biotechnol. 2013, 170, 1751.  doi: 10.1007/s12010-013-0303-2

    76. [76]

      Ma, L.; Du, L.; Chen, H.; Sun, Y.; Huang, S.; Zheng, X.; Kim, E. S.; Li, S. Appl. Environ. Microbiol. 2015, 81, 6268.

    77. [77]

      Zhang, W.; Liu, Y.; Yan, J.; Cao, S.; Bai, F.; Yang, Y.; Huang, S.; Yao, L.; Anzai, Y.; Kato, F.; Podust, L. M.; Sherman, D. H.; Li, S. J. Am. Chem. Soc. 2014, 136, 3640.
       

    78. [78]

      Liu, Y.; Wang, C.; Yan, J.; Zhang, W.; Guan, W.; Lu, X.; Li, S. Biotechnol. Biofuels 2014, 256, 130.

    79. [79]

      Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J. Nature 2006, 440, 940.

    80. [80]

      (a) Chefson, A.; Auclair, K. Mol. BioSyst. 2006, 2, 462.
      (b) Schewe, H.; Holtmann, D.; Schrader, J. Appl. Microbiol. Biotechnol. 2009, 83, 849.

    81. [81]

      Shrestha, P.; Oh, T. J.; Sohng, J. K. Biotechnol. Lett. 2008, 30, 1101.

    82. [82]

      Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.
       

    83. [83]

      Narayan, A. R.; Jiménez-Osés, G.; Liu, P; Negretti, S.; Zhao, W; Gilbert, M. M.; Ramabhadran, R. O.; Yang, Y. F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.

    84. [84]

      Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Nature 2016, 534, 534.

    85. [85]

      Hansen, D. A.; Rath, C. M.; Eisman, E. B.; Narayan, A. R.; Kittendorf, J. D.; Mortison, J. D.; Yoon, Y. J.; Sherman, D. H. J. Am. Chem. Soc. 2013, 135, 11232.

    86. [86]

      (a) Perez, D. I.; Grau, M. M.; Arends, I. W. C. E.; Hollmann, F. Chem. Commun. 2010, 41, 6848.
      (b) Girhard, M.; Kunigk, E.; Tihovsky, S.; Shumyantseva, V. V.; Urlacher, V. B. Biotechnol. Appl. Biochem. 2013, 60, 111.
      (c) Paul, C. E.; Churakova, E.; Maurits, E.; Girhard, M.; Urlacher, V. B.; Hollmann, F. Biorg. Med. Chem. 2014, 22, 5692.

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    16. [16]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

Metrics
  • PDF Downloads(669)
  • Abstract views(14012)
  • HTML views(6383)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return