Citation: Cui Jingjing. State of the Art in Germanium-Containing Aromatic Systems[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 2888-2895. doi: 10.6023/cjoc201805049 shu

State of the Art in Germanium-Containing Aromatic Systems

  • Corresponding author: Cui Jingjing, 17061701@wit.edu.cn
  • Received Date: 26 May 2018
    Revised Date: 20 June 2018
    Available Online: 5 November 2018

    Fund Project: Project supported by the Knowledge Innovation Program of Hubei Provience (Natural Science Foundation) 2018CFB347Project supported by the Knowledge Innovation Program of Hubei Provience (Natural Science Foundation) (No. 2018CFB347) and the Youths Science Foundation (No. K201832) of Wuhan Institute of Technologythe Youths Science Foundation of Wuhan Institute of Technology K201832

Figures(9)

  • Germanium-containing conjugated compounds are regarded as powerful candidates for the development of optoelectronic material. As a subclass of germanium-containing conjugated compounds and a crucial type of the heavy analogues of aromatic compounds, germanium-containing aromatic hydrocarbons (Ge-AHs) have attracted much attention and developed rapidly in recent days. According to the charge of the Ge-AHs, these species were categorized into three subclasses:neutral, anionic and cationic species. Herein, the synthetic methodology together with the reactivity of these reported Ge-AHs is summarized and the parameters used for the evaluation of the aromaticity of these compounds is highlighted. Ge-AHs and aromatic hydrocarbons share similar structural and magnetic properties. However, their major reactivity is quite different. This review will not only inspire the discovery of new structures and reactivities of Ge-Ahs, but also help to form a deeper understanding of the concept of aromaticy.
  • 加载中
    1. [1]

      (a) Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871.
      (b) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.; So, F.; Reynolds, J. R. J. Am. Chem. Soc. 2011, 133, 10062.
      (c) Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2015, 22, 248.
      (d) Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.
      (e) Ohshita, J.; Miyazaki, M.; Nakashima, M.; Tanaka, D.; Ooyama, Y.; Sasaki, T.; Kunugi, Y.; Morihara, Y. RSC Adv. 2015, 5, 12686.
      (f) Parke, S. M.; Boone, M. P.; Rivard, E. Chem. Commun. 2016, 52, 9485.

    2. [2]

      (a) Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 811.
      (b) Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.
      (c) Cao, X.-Y.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341.
      (d) Roy, S.; Rosenthal, U.; Jemmis, E. D. Acc. Chem. Res. 2014, 47, 2917.
      (e) Fernandez, I.; Frenking, G.; Merino, G. Chem. Soc. Rev. 2015, 44, 6452.
      (f) Wei, J.; Zhang, Y.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2015, 54, 9986.
      (g) Wei, J.; Zhang, Y.; Chi, Y.; Liu, L.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2016, 138, 60.
      (h) Zhang, Y.; Wei, J.; Chi, Y.; Zhang, X.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5039.
      (i) Zhang, Y.; Chi, Y.; Wei, J.; Yang, Q.; Yang, Z.; Chen, H.; Yang, R.; Zhang, W.-X.; Xi, Z. Organometallics 2017, 36, 2982.
      (j) Frogley, B. J.; Wright, L. J. Chem. Eur. J. 2018, 24, 2025.

    3. [3]

      (a) Lee, V. Y.; Sekiguchi, A. Chem. Soc. Rev. 2008, 37, 1652.
      (b) Lee, V. Y.; Sekiguchi, A. In Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb, John Wiley & Sons, Ltd, 2010, p. 335.
      (c) Tokitoh, N.; Inamura, K.; Mizuhata, Y. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1323.
      (d) Wei, J.; Zhang, W.-X.; Xi, Z. Chem. Sci. 2018, 9, 560.
      (e) Saito, M. Acc. Chem. Res. 2018, 51, 160.

    4. [4]

      Hua, Y. H.; Zhang, H.; Xia, H. P. Chin. J. Org. Chem. 2018, 38, 11(in Chinese).
       

    5. [5]

      Izawa, M.; Kim, T.; Ishida, S. i.; Tanaka, T.; Mori, T.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2017, 56, 3982.  doi: 10.1002/anie.201700063

    6. [6]

      Märkl, G.; Rudnick, D. Tetrahedron Lett. 1980, 21, 1405.  doi: 10.1016/S0040-4039(00)92731-X

    7. [7]

      Märkl, G.; Rudnick, D.; Schulz, R.; Schweig, A. Angew. Chem., Int. Ed. 1982, 21, 221.
       

    8. [8]

      Nakata, N.; Takeda, N.; Tokitoh, N. Organometallics 2001, 20, 5507.  doi: 10.1021/om010881y

    9. [9]

      Mizuhata, Y.; Sasamori, T.; Nagahora, N.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Dalton Trans. 2008, 4409.
       

    10. [10]

      (a) Nakata, N.; Takeda, N.; Tokitoh, N. J. Am. Chem. Soc. 2002, 124, 6914.
      (b) Nakata, N.; Takeda, N.; Tokitoh, N. J. Organomet. Chem. 2003, 672, 66.

    11. [11]

      Sasamori, T.; Inamura, K.; Hoshino, W.; Nakata, N.; Mizuhata, Y.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Organometallics 2006, 25, 3533.  doi: 10.1021/om060371+

    12. [12]

      Tokitoh, N. Acc. Chem. Res. 2004, 37, 86.  doi: 10.1021/ar020093k

    13. [13]

      (a) Tokitoh, N.; Nakata, N.; Shinohara, A.; Takeda, N.; Sasamori, T. Chem. Eur. J. 2007, 13, 1856.
      (b) Mizuhata, Y.; Inamura, K.; Tokitoh, N. Can. J. Chem. 2014, 92, 441.

    14. [14]

      (a) Nakata, N.; Takeda, N.; Tokitoh, N. Chem. Lett. 2002, 31, 818.
      (b) Nakata, N.; Takeda, N.; Tokitoh, N. Angew. Chem., Int. Ed. 2003, 42, 115.

    15. [15]

      Nakata, N.; Takeda, N.; Tokitoh, N. Organometallics 2003, 22, 481.  doi: 10.1021/om020879m

    16. [16]

      (a) Sasamori, T.; Sugahara, T.; Agou, T.; Guo, J.-D.; Nagase, S.; Streubel, R.; Tokitoh, N. Organometallics 2015, 34, 2106.
      (b) Sugahara, T.; Guo, J.-D.; Sasamori, T.; Karatsu, Y.; Furukawa, Y.; Ferao, A. E.; Nagase, S.; Tokitoh, N. Bull. Chem. Soc. Jpn. 2016, 89, 1375.

    17. [17]

      Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N. Angew. Chem., Int. Ed. 2018, 57, 3499.  doi: 10.1002/anie.201801222

    18. [18]

      Boehme, C.; Frenking, G. J. Am. Chem. Soc. 1996, 118, 2039.  doi: 10.1021/ja9527075

    19. [19]

      Tuononen, H. M.; Roesler, R.; Dutton, J. L.; Ragogna, P. J. Inorg. Chem. 2007, 46, 10693.  doi: 10.1021/ic701350e

    20. [20]

      Leites, L. A.; Bukalov, S. S.; Aysin, R. R.; Piskunov, A. V.; Chegerev, M. G.; Cherkasov, V. K.; Zabula, A. V.; West, R. Organometallics 2015, 34, 2278.  doi: 10.1021/om501054t

    21. [21]

      Meller, A.; Pfeiffer, J.; Noltemeyer, M. Z. Anorg. Allg. Chem. 1989, 572, 145.  doi: 10.1002/(ISSN)1521-3749

    22. [22]

      Herrmann, W. A.; Denk, M.; Behm, J.; Scherer, W.; Klingan, F. R.; Bock, H.; Solouki, B.; Wagner, M. Angew. Chem., Int. Ed. 1992, 31, 1485.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1

    24. [24]

      Leites, L. A.; Bukalov, S. S.; Zabula, A. V.; Garbuzova, I. A.; Moser, D. F.; West, R. J. Am. Chem. Soc. 2004, 126, 4114.  doi: 10.1021/ja0317877

    25. [25]

      Guha, A. K.; Sarmah, S.; Phukan, A. K. Dalton Trans. 2010, 39, 7374.  doi: 10.1039/c003266b

    26. [26]

      (a) Aysin, R. R.; Leites, L. A.; Bukalov, S. S.; Zabula, A. V.; West, R. Inorg. Chem. 2016, 55, 4698.
      (b) Aysin, R. R.; Bukalov, S. S.; Leites, L. A.; Zabula, A. V. Dalton Trans. 2017, 46, 8774.

    27. [27]

      Kühl, O.; L nnecke, P.; Heinicke, J. Inorg. Chem. 2003, 42, 2836.  doi: 10.1021/ic0259991

    28. [28]

      Blom, B.; Said, A.; Szilvási, T.; Menezes, P. W.; Tan, G.; Baumgartner, J.; Driess, M. Inorg. Chem. 2015, 54, 8840.  doi: 10.1021/acs.inorgchem.5b01643

    29. [29]

      Tumanskii, B.; Pine, P.; Apeloig, Y.; Hill, N. J.; West, R. J. Am. Chem. Soc. 2005, 127, 8248.  doi: 10.1021/ja051169l

    30. [30]

      Naka, A.; Hill, N. J.; West, R. Organometallics 2004, 23, 6330.  doi: 10.1021/om049233f

    31. [31]

      Su, B.; Ganguly, R.; Li, Y.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 13106.  doi: 10.1002/anie.201406930

    32. [32]

      Su, B.; Ganguly, R.; Li, Y.; Kinjo, R. Chem. Commun. 2016, 52, 613.  doi: 10.1039/C5CC08665E

    33. [33]

      Freeman, W. P.; Tilley, T. D.; Rheingold, A. L.; Ostrander, R. L.; Angew. Chem., Int. Ed. Engl. 1993, 32, 1744.  doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Freeman, W. P.; Tilley, T. D.; LiableSands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 10457.  doi: 10.1021/ja962103g

    35. [35]

      Goldfuss, B.; Schleyer, P. V. R. Organometallics 1997, 16, 1543.  doi: 10.1021/om960994v

    36. [36]

      Freeman, W. P.; Tilley, T. D.; Rheingold, A. L.; Ostrander, R. L. Angew. Chem., Int. Ed. 1993, 32, 1744.  doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Dysard, J. M.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122, 3097.  doi: 10.1021/ja993563n

    38. [38]

      (a) Dysard, J. M.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 8245. (b) Freeman, W. P.; Dysard, J. M.; Tilley, T. D.; Rheingold, A. L. Organometallics 2002, 21, 1734.

    39. [39]

      Dysard, J. M.; Tilley, T. D. Organometallics 2000, 19, 2671.  doi: 10.1021/om000220l

    40. [40]

      (a) Lee, V. Y.; Kato, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2005, 127, 13142.
      (b) Lee, V. Y.; Takanashi, K.; Kato, R.; Matsuno, T.; Ichinohe, M.; Sekiguchi, A. J. Organomet. Chem. 2007, 692, 2800.

    41. [41]

      (a) Lee, V. Y.; Kato, R.; Sekiguchi, A.; Krapp, A.; Frenking, G. J. Am. Chem. Soc. 2007, 129, 10340.
      (b) Lee, V. Y.; Kato, R.; Sekiguchi, A. Bull. Chem. Soc. Jpn. 2013, 86, 1466.

    42. [42]

      West, R.; Sohn, H.; Powell, D. R.; Müller, T.; Apeloig, Y. Angew. Chem., Int. Ed. 1996, 35, 1002.  doi: 10.1002/(ISSN)1521-3773

    43. [43]

      Choi, S.-B.; Boudjouk, P.; Qin, K. Organometallics 2000, 19, 1806.  doi: 10.1021/om990991t

    44. [44]

      Liu, Y. X.; Ballweg, D.; Muller, T.; Guzei, I. A.; Clark, R. W.; West, R. J. Am. Chem. Soc. 2002, 124, 12174.  doi: 10.1021/ja020267t

    45. [45]

      Wang, W.; Yao, S.; van Wüllen, C.; Driess, M. J. Am. Chem. Soc. 2008, 130, 9640.  doi: 10.1021/ja802502b

    46. [46]

      Driess, M.; Woodul, W. D.; Richards, A. F.; Stasch, A.; Jones, C. Organometallics 2010, 29, 3655.  doi: 10.1021/om100595a

    47. [47]

      Wang, W.; Inoue, S.; Yao, S.; Driess, M. Chem. Commun. 2009, 2661.

    48. [48]

      Mizuhata, Y.; Fujimori, S.; Sasamori, T.; Tokitoh, N. Angew. Chem., Int. Ed. 2017, 56, 4588.  doi: 10.1002/anie.201700801

    49. [49]

      (a) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M.; Fukaya, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 323.
      (b) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M. Science 1997, 275, 60.

    50. [50]

      (a) Sekiguchi, A.; Fukaya, N.; Ichinohe, M.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 1999, 121, 11587.
      (b) Sekiguchi, A.; Ishida, Y.; Fukaya, N.; Ichinohe, M.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2002, 124, 1158.

    51. [51]

      Sekiguchi, A.; Ishida, Y.; Kabe, Y.; Ichinohe, M. J. Am. Chem. Soc. 2002, 124, 8776.  doi: 10.1021/ja020395h

    52. [52]

      Ishida, Y.; Sekiguchi, A.; Kabe, Y. J. Am. Chem. Soc. 2003, 125, 11468.  doi: 10.1021/ja030327a

    53. [53]

      Fukaya, N.; Ichinohe, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2000, 39, 3881.  doi: 10.1002/(ISSN)1521-3773

    54. [54]

      Stender, M.; Phillips, A. D.; Power, P. P. Inorg. Chem. 2001, 40, 5314.  doi: 10.1021/ic0155582

    55. [55]

      Driess, M.; Yao, S.; Brym, M.; Wüllen, C. V. Angew. Chem., Int. Ed. 2006, 45, 4349.  doi: 10.1002/(ISSN)1521-3773

  • 加载中
    1. [1]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    2. [2]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    3. [3]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    4. [4]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    5. [5]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    10. [10]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

    11. [11]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    12. [12]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    13. [13]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    14. [14]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    15. [15]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    16. [16]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(21)
  • Abstract views(1453)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return