Citation: Cong Wenxia, Wang Li, Yu Fuqiang, Li Jixing. Research Process towards the Synthesis of Pyrrolo[1, 2-a] quinoxaline Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 2866-2878. doi: 10.6023/cjoc201805046 shu

Research Process towards the Synthesis of Pyrrolo[1, 2-a] quinoxaline Compounds

  • Corresponding author: Li Jixing, jxli1987123@126.com
  • Received Date: 24 May 2018
    Revised Date: 19 June 2018
    Available Online: 24 November 2018

    Fund Project: the Start-up Funding for Doctors in Linyi University 40613021Project supported by the Start-up Funding for Doctors in Linyi University (No. 40613021)

Figures(9)

  • Pyrrolo[1, 2-a] quinoxalines are a kind of important nitrogen-containing heterocycles which are widely existed in the natural products and bio-active molecules. Therefore, the synthesis of such motifs, especially those with substituted pyrrolo[1, 2-a] quinoxalines, is of great significance in theory and reality. This review focuses on the research process towards the synthesis of pyrrolo[1, 2-a] quinoxalines and 4, 5-dihydropyrrolo[1, 2-a] quinoxalines, including the advantages and disadvantages as well as an outlook in this field.
  • 加载中
    1. [1]

      (a) Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armoroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.; Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.; Caccia, S. J. Med. Chem. 2001, 44, 305.
      (b) Glennon, R. A.; Daoud, M. K.; Dukat, M.; Teitler, M.; Herrick-Davis, K.; Purohit, A.; Syed, H. Bioorg. Med. Chem. 2003, 11, 4449.
      (c) Carta, A.; Loriga, M.; Paglietti, G.; Mattana, A.; Fiori, P. L.; Mollicotti, P.; Sechi, L.; Zanetti, S. Eur. J. Med. Chem. 2004, 39, 195.
      (d) Gemma, S.; Colombo, L.; Forloni, G.; Savini, L.; Fracasso, C.; Caccia, S.; Salmona, M.; Brindisi, M.; Joshi, B. P.; Tripaldi, P.; Giorgi, G.; Taglialatela-Scafati, O.; Novellino, E.; Fiorini, I.; Campiani, G.; Butini, S. Org. Biomol. Chem. 2011, 9, 5137.

    2. [2]

      (a) Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S. B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. Bioorg. Med. Chem. 2008, 16, 9133.
      (b) Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J. M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. Eur. J. Med. Chem. 2011, 46, 2310.
      (c) Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliège, M.; Thiolat, D.; Massip, S.; Tabourier, A.; Léger, J.-M.; Dufaure, B.; Haumont, G.; Jarry, C.; Mossalayi, D. Bioorg. Med. Chem. 2007, 15, 194.
      (d) Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud-Paniagua, S.; Vidal, J. R.; Bressolle, F.; Pinguet, P.; Bonnet, P. A. Bioorg. Med. Chem. 2008, 16, 6601.
      (e) Guillon, J.; Le Borgne, M.; Rimbault, C.; Moreau, S.; Savrimoutou, S.; Pinaud, N.; Baratin, S.; Marchivie, M.; Roche, S.; Bollacke, A.; Pecci, A.; Alvarez, L.; Desplat, V.; Jose, J. Eur. J. Med. Chem. 2013, 65, 205.

    3. [3]

      Cheeseman, G. W. H.; Tuck, B. Chem. Ind. 1965, 1382.

    4. [4]

      Cheeseman, G. W. H.; Tuck, B. J. Chem. Soc. (C) 1966, 852.

    5. [5]

      (a) Li, J. X.: Zhang, J. L.; Yang, H. M.; Gao, Z.; Jiang, G. X. J. Org. Chem. 2017, 82, 765.
      (b) Li, J. X.: Zhang, J. L.; Yang, H. M.; Jiang, G. X. J. Org. Chem. 2017, 82, 3284.

    6. [6]

      Wang, M. M.; Wang, Z. X.; Shang, M.; Dai, H. X. Chin. J. Org. Chem. 2015, 35, 570(in Chinese).
       

    7. [7]

      Hu, Z. Y.; Tong, X. F.; Liu, G. X. Chin. J. Org. Chem. 2015, 35, 539(in Chinese).
       

    8. [8]

      Lu, Q. Q.; Yi, H.; Lei, A. W. Acta Chim. Sinica 2015, 73, 1245(in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.10.013

    9. [9]

      Yu, J. Q.; Ding, K. L. Acta Chim. Sinica 2015, 73, 1223(in Chinese).
       

    10. [10]

      Zhu, Q.; Wang, L.; Xia, C. G.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese).
       

    11. [11]

      Lyons, T.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.  doi: 10.1021/cr900184e

    12. [12]

      Ackermann, L. Chem. Rev. 2011, 111, 1315.  doi: 10.1021/cr100412j

    13. [13]

      Brückl, T.; Baxter, R. D.; Ishihiro, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826.  doi: 10.1021/ar200194b

    14. [14]

      Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.  doi: 10.1039/c2cs15281a

    15. [15]

      Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012, 41, 5588.  doi: 10.1039/c2cs35096c

    16. [16]

      Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.  doi: 10.1021/cr900005n

    17. [17]

      Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2011, 51, 10236.

    18. [18]

      Engle, K. M.; Mei, T. S.; Wase, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788.  doi: 10.1021/ar200185g

    19. [19]

      Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.  doi: 10.1039/C5QO00004A

    20. [20]

      Abbiati, G.; Beccalli, E. M.; Broggini, G.; Paladino, G.; Rossia, E. Synthesis 2005, 2881.
       

    21. [21]

      Yuan, Q. L.; Ma, D. W. J. Org. Chem. 2008, 73, 5159.  doi: 10.1021/jo8008098

    22. [22]

      Reeves, J. T.; Fandrick, D. R.; Tan, Z. L.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2010, 75, 992.  doi: 10.1021/jo9025644

    23. [23]

      Biswas, S.; Batra, S. Eur. J. Org. Chem. 2013, 77, 4895.

    24. [24]

      Li, Z. H.; Yan, N. N.; Xie, J. W.; Liu, P.; Zhang, J.; Dai, B. Chin. J. Chem. 2015, 33, 589.  doi: 10.1002/cjoc.201500115

    25. [25]

      Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. Eur. J. Org. Chem. 2011, 75, 6998.

    26. [26]

      Pereira, M. F.; Thiery, V. Org. Lett. 2012, 18, 4754.

    27. [27]

      Rubio-Presa, R.; Pedrosa, M. R.; Fernań dez-Rodríguez, M. A.; Arnaíz, F. J.; Sanz, R. Org. Lett. 2017, 19, 5470.  doi: 10.1021/acs.orglett.7b02792

    28. [28]

      Liu, H. H.; Duan, T. T.; Zhang, Z. Y.; Xie, C. X.; Ma, C. Org. Lett. 2015, 17, 2932.  doi: 10.1021/acs.orglett.5b01167

    29. [29]

      (a) Nandwana, N. K.; Pericherla, K.; Kaswan, P.; Kumar, A. Org. Biomol. Chem. 2015, 13, 2947.
      (b) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.
      (c) Huang, A.; Liu, H. H.; Ma, C. RSC Adv. 2013, 3, 13976.

    30. [30]

      Yu, J. Q.; Shi, Z. J. C-H Activation, Springer, Berlin, 2010.

    31. [31]

      (a) Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
      (b) Wang, C. Y. Synlett 2013, 1606.
      (c) Jia, F.; Li, Z. P. Org. Chem. Front. 2014, 1, 194.
      (d) Ackermann, L. J. Org. Chem. 2014, 79, 8948.

    32. [32]

      Bauer, I.; Kn lker, H. J. Chem. Rev. 2015, 115, 3170.  doi: 10.1021/cr500425u

    33. [33]

      (a) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858.
      (b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755.
      (c) Gu, Q.; Mamari, H. H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 5268.

    34. [34]

      Zhang, Z. G.; Li, J. L.; Zhang, G. S.; Ma, N. N.; Liu, Q. F.; Liu, T. X. J. Org. Chem. 2015, 80, 6875.  doi: 10.1021/acs.joc.5b00915

    35. [35]

      Lade, J. J.; Patil, B. N.; Sathe, P. A.; Vadagaonkar, K. S.; Chetti, P.; Chaskar, A. C. ChemistrySelect. 2017, 2, 6811.  doi: 10.1002/slct.201701383

    36. [36]

      (a) Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238.
      (b) Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 43, 1122.

    37. [37]

      Lade, J. J.; Patil, B. N.; Vhatkar, M. V.; Vadagaonkar, K. S.; Chaskar, A. C. Asian J. Org. Chem. 2017, 6, 1579.  doi: 10.1002/ajoc.v6.11

    38. [38]

      An, Z. Y.; Zhao, L. B.; Wu, M. Z.; Ni, J. X.; Qi, Z. J.; Yu, G. Q.; Yan, R. L. Chem. Commun. 2017, 53, 11572.  doi: 10.1039/C7CC07089F

    39. [39]

      Kobayashi, K.; Matoba, T.; Irisawa, S.; Matsumoto, T.; Morikawa, O.; Konishi, H. Chem. Lett. 1998, 551.

    40. [40]

      Kobayashi, K.; Irisawa, S.; Matoba, T.; Matsumoto, T.; Yoneda, K.; Morikawa, O.; Konishi, H. Bull. Chem. Soc. Jpn. 2001, 74, 1109.  doi: 10.1246/bcsj.74.1109

    41. [41]

      Huang, A. P.; Liu, F.; Zhan, C. J.; Liu, Y. L.; Ma, C. Org. Biomol. Chem. 2011, 9, 7351.  doi: 10.1039/c1ob05936j

    42. [42]

      (a) Zmitek, K.; Zupan, M.; Stavber, S.; Iskra, J. J. Org. Chem. 2007, 72, 6534.
      (b) Ren, Y. M.; Cai, C. Org. Prep. Proced. Int. 2008, 40, 101.
      (c) Deka, N.; Mariotte, A. M.; Boumendjel, A. Green Chem. 2001, 3, 263.
      (d) Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283.

    43. [43]

      (a) Miller, R. A.; Hoerrner, R. S. Org. Lett. 2003, 5, 285.
      (b) Gogoi, P.; Konwar, D. Org. Biomol. Chem. 2005, 3, 3473.
      (c) Togo, H.; Iida, S. Synlett 2006, 2159.

    44. [44]

      Ramamohan, M.; Sridhar, R.; Raghavendrarao, K.; Paradesi, N.; Chandrasekhar, K. B.; Jayaprakash, S. Synlett 2015, 26, 1096.  doi: 10.1055/s-0034-1380347

    45. [45]

      Naresh, G.; Kant, R.; Narender, T. J. Org. Chem. 2014, 79, 3821.  doi: 10.1021/jo5000797

    46. [46]

      (a) Li, C. J. Acc. Chem. Res. 2009, 42, 335.
      (b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56.
      (c) Li, B. J.; Tian, S. L.; Fang, Z.; Shi, Z. J. Angew. Chem., Int. Ed. 2008, 47, 1115.
      (d) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H. Y.; Lei, A. W. J. Am. Chem. Soc. 2012, 134, 5766.

    47. [47]

      Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562.  doi: 10.1021/ja01581a057

    48. [48]

      (a) Ge, W.; Zhu. X.; Wei, Y. Green Chem. 2012, 14, 2066.
      (b) Ashikari, Y.; Shimizu, A.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 16070.

    49. [49]

      Zhang, Z. Y.; Xie, C. X.; Tan, X. X.; Song, G. L.; Wen, L. L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.  doi: 10.1039/C5QO00124B

    50. [50]

      (a) Tewari, N.; Katiyar, D.; Tiwari, V. K.; Tripathi, R. P. Tetrahedron Lett. 2003, 44, 6639.
      (b) Nisar, M.; Ali, I.; Shah, M. R.; Badshah, A.; Qayum, M.; Khan, H.; Khand, I.; Ali, S. RSC Adv. 2013, 3, 21753.

    51. [51]

      Kamal, A.; Babu, K. S.; Kovvuri, J.; Manasa, V.; Ravikumar, A. Alarifi, A. Tetrahedron Lett. 2015, 56, 7012.  doi: 10.1016/j.tetlet.2015.11.003

    52. [52]

      Patel, B.; Hilton, S. T. Synlett 2015, 26, 79.

    53. [53]

      Xie, C. X.; Feng, L.; Li, W. L.; Ma, X. J.; Ma, X. K.; Liu, Y. H.; Ma, C. Org. Biomol. Chem. 2016, 14, 8529.  doi: 10.1039/C6OB01401A

    54. [54]

      (a) Roy, S.; Davydova, M. P.; Pal, R.; Gilmore, K.; Tolstikov, G. A.; Vasilevsky, S. F.; Alabugin, I. V. J. Org. Chem. 2011, 76, 7482.
      (b) Mayo, M. S.; Yu, X.; Zhou, X.; Yamamoto, Y.; Bao, M. J. Org. Chem. 2014, 79, 6310.
      (c) Li, Z. W.; Dong, J. Y.; Chen, X. L.; Li, Q.; Zhou, Y. B.; Yin, S. F. J. Org. Chem. 2015, 80, 9392.

    55. [55]

      (a) Pinaka, A.; Vougioukalakis, G. C. Coord. Chem. Rev. 2015, 288, 69.
      (b) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
      (c) Huang, K.; Sun, C. L.; Shi, Z. J. Chem. Soc. Rev. 2011, 40, 2435.
      (d) Wang, S.; Du, G. X.; Xi, C. J. Org. Biomol. Chem. 2016, 14, 3666.
      (e) Martín, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259.

    56. [56]

      (a) Chauvier, C.; Tlili, A.; Das Neves Gomes, C.; Thuéry, P.; Cantat, T. Chem. Sci. 2015, 6, 2938.
      (b) Wang, X.; Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2015, 137, 8924.
      (c) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
      (d) Chong, C. C.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 12116.

    57. [57]

      Wang, S.; Shao, P.; Du, G. X.; Xi, C. J. J. Org. Chem. 2016, 81, 6672.  doi: 10.1021/acs.joc.6b01318

    58. [58]

      (a) Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257.
      (b) Largeron, M.; Fleury, M. B. Science 2013, 339, 43.
      (c) Hao, W. J.; Wang, J. Q.; Xu, X. P.; Zhang, S. L.; Wang, S. Y.; Ji, S. J. J. Org. Chem. 2013, 78, 12362.
      (d) Matsumoto, K.; Dougomori, K.; Tachikawa, S.; Ishii, T.; Shindo, M. Org. Lett. 2014, 16, 4754.

    59. [59]

      (a) Zhang, C.; Zhang, L. R.; Jiao, N. Green Chem. 2012, 14, 3273.
      (b) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2003, 15, 2713.
      (c) Lee, Y. S.; Cho, Y. H.; Lee, S.; Bin, J. K.; Yang, J.; Chae, G.; Cheon, C. H. Tetrahedron 2015, 71, 532.

    60. [60]

      Wang, C.; Li, Y.; Zhao, J. F.; Cheng, B.; Wang, H. F.; Zhai, H. B. Tetrahedron Lett. 2016, 57. 3908.  doi: 10.1016/j.tetlet.2016.07.041

    61. [61]

      Xie, C. X.; Zhang, Z. Y.; Li, D. Y.; Gong, J.; Han, X. S.; Liu, X.; Ma, C. J. Org. Chem. 2017, 82, 3491.  doi: 10.1021/acs.joc.6b02977

    62. [62]

      (a) Tradtrantip, L.; Sonawane, N. D.; Namkung, W.; Verkman, A. S. J. Med. Chem. 2009, 52, 6447.
      (b) Szabó, G.; Kiss, R.; Páyer-Lengyel, D.; Vukics, K.; Szikra, J. Bioorg. Med. Chem. Lett. 2009, 19, 3471.

    63. [63]

      (a) Bongers, N.; Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178.
      (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
      (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
      (d) Skouta, R.; Li, C. J. Tetrahedron 2008, 64, 4917.

    64. [64]

      Liu, G. N.; Zhou, Y.; Lin, D. Z.; Wang, J. F.; Zhang, L.; Jiang, H. L.; Liu, H. ACS Comb. Sci. 2011, 13, 209.  doi: 10.1021/co1000844

    65. [65]

      (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
      (b) Lorenz, M.; Van Linn, M. L.; Cook, J. M. Curr. Org. Synth. 2010, 7, 189.

    66. [66]

      (a) Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538.
      (b) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.
      (c) Seayad, J. Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086.
      (d) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404.
      (e) Cai, Q.; Liang, X. W.; Wang, S. G.; Zhang, J. W.; Zhang, X.; You, S. L. Org. Lett. 2012, 14, 5022.

    67. [67]

      Li, Y.; Su, Y. H.; Dong, D. J.; Wu, Z.; Tian, S. K. RSC Adv. 2013, 3, 18275.  doi: 10.1039/c3ra43248c

    68. [68]

      (a) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3, 1819.
      (b) Müler, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

    69. [69]

      (a) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
      (b) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5372.
      (c) LaLonde, R. L.; Wang, Z. J.; Mba, M.; Lackner, A. D.; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 598.

    70. [70]

      Shinde, V. S.; Mane, M. V.; Vanka, K.; Mallick, A.; Patil, N. T. Chem.-Eur. J. 2015, 21, 975.  doi: 10.1002/chem.201405061

    71. [71]

      (a) Li, C. J. Chem. Rev. 2005, 105, 3095.
      (b) Li, C. J.; Chang, T. H. Organic Reactions in Aqueous Media, Wiley, New York, 1997.

    72. [72]

      Kamal, A.; Babu, K. S.; Ali Hussaini, S. M.; Srikanth, P. S.; Balakrishna, M.; Alarifi, A. Tetrahedron Lett. 2015, 56, 4619.  doi: 10.1016/j.tetlet.2015.06.006

    73. [73]

      Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.  doi: 10.1038/414625a

    74. [74]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    75. [75]

      Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.  doi: 10.1039/B913880N

    76. [76]

      Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.  doi: 10.1021/ja805387f

    77. [77]

      Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.  doi: 10.1021/ja9033582

    78. [78]

    79. [79]

      He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451.  doi: 10.1002/anie.201408522

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    19. [19]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(36)
  • Abstract views(1667)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return