Research Process towards the Synthesis of Pyrrolo[1, 2-a] quinoxaline Compounds
- Corresponding author: Li Jixing, jxli1987123@126.com
Citation:
Cong Wenxia, Wang Li, Yu Fuqiang, Li Jixing. Research Process towards the Synthesis of Pyrrolo[1, 2-a] quinoxaline Compounds[J]. Chinese Journal of Organic Chemistry,
;2018, 38(11): 2866-2878.
doi:
10.6023/cjoc201805046
(a) Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armoroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.; Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.; Caccia, S. J. Med. Chem. 2001, 44, 305.
(b) Glennon, R. A.; Daoud, M. K.; Dukat, M.; Teitler, M.; Herrick-Davis, K.; Purohit, A.; Syed, H. Bioorg. Med. Chem. 2003, 11, 4449.
(c) Carta, A.; Loriga, M.; Paglietti, G.; Mattana, A.; Fiori, P. L.; Mollicotti, P.; Sechi, L.; Zanetti, S. Eur. J. Med. Chem. 2004, 39, 195.
(d) Gemma, S.; Colombo, L.; Forloni, G.; Savini, L.; Fracasso, C.; Caccia, S.; Salmona, M.; Brindisi, M.; Joshi, B. P.; Tripaldi, P.; Giorgi, G.; Taglialatela-Scafati, O.; Novellino, E.; Fiorini, I.; Campiani, G.; Butini, S. Org. Biomol. Chem. 2011, 9, 5137.
(a) Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S. B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. Bioorg. Med. Chem. 2008, 16, 9133.
(b) Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J. M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. Eur. J. Med. Chem. 2011, 46, 2310.
(c) Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliège, M.; Thiolat, D.; Massip, S.; Tabourier, A.; Léger, J.-M.; Dufaure, B.; Haumont, G.; Jarry, C.; Mossalayi, D. Bioorg. Med. Chem. 2007, 15, 194.
(d) Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud-Paniagua, S.; Vidal, J. R.; Bressolle, F.; Pinguet, P.; Bonnet, P. A. Bioorg. Med. Chem. 2008, 16, 6601.
(e) Guillon, J.; Le Borgne, M.; Rimbault, C.; Moreau, S.; Savrimoutou, S.; Pinaud, N.; Baratin, S.; Marchivie, M.; Roche, S.; Bollacke, A.; Pecci, A.; Alvarez, L.; Desplat, V.; Jose, J. Eur. J. Med. Chem. 2013, 65, 205.
Cheeseman, G. W. H.; Tuck, B. Chem. Ind. 1965, 1382.
Cheeseman, G. W. H.; Tuck, B. J. Chem. Soc. (C) 1966, 852.
(a) Li, J. X.: Zhang, J. L.; Yang, H. M.; Gao, Z.; Jiang, G. X. J. Org. Chem. 2017, 82, 765.
(b) Li, J. X.: Zhang, J. L.; Yang, H. M.; Jiang, G. X. J. Org. Chem. 2017, 82, 3284.
Wang, M. M.; Wang, Z. X.; Shang, M.; Dai, H. X. Chin. J. Org. Chem. 2015, 35, 570(in Chinese).
Hu, Z. Y.; Tong, X. F.; Liu, G. X. Chin. J. Org. Chem. 2015, 35, 539(in Chinese).
Lu, Q. Q.; Yi, H.; Lei, A. W. Acta Chim. Sinica 2015, 73, 1245(in Chinese).
doi: 10.3969/j.issn.0253-2409.2015.10.013
Yu, J. Q.; Ding, K. L. Acta Chim. Sinica 2015, 73, 1223(in Chinese).
Zhu, Q.; Wang, L.; Xia, C. G.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese).
Lyons, T.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
doi: 10.1021/cr900184e
Ackermann, L. Chem. Rev. 2011, 111, 1315.
doi: 10.1021/cr100412j
Brückl, T.; Baxter, R. D.; Ishihiro, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826.
doi: 10.1021/ar200194b
Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.
doi: 10.1039/c2cs15281a
Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012, 41, 5588.
doi: 10.1039/c2cs35096c
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
doi: 10.1021/cr900005n
Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2011, 51, 10236.
Engle, K. M.; Mei, T. S.; Wase, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788.
doi: 10.1021/ar200185g
Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.
doi: 10.1039/C5QO00004A
Abbiati, G.; Beccalli, E. M.; Broggini, G.; Paladino, G.; Rossia, E. Synthesis 2005, 2881.
Yuan, Q. L.; Ma, D. W. J. Org. Chem. 2008, 73, 5159.
doi: 10.1021/jo8008098
Reeves, J. T.; Fandrick, D. R.; Tan, Z. L.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2010, 75, 992.
doi: 10.1021/jo9025644
Biswas, S.; Batra, S. Eur. J. Org. Chem. 2013, 77, 4895.
Li, Z. H.; Yan, N. N.; Xie, J. W.; Liu, P.; Zhang, J.; Dai, B. Chin. J. Chem. 2015, 33, 589.
doi: 10.1002/cjoc.201500115
Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. Eur. J. Org. Chem. 2011, 75, 6998.
Pereira, M. F.; Thiery, V. Org. Lett. 2012, 18, 4754.
Rubio-Presa, R.; Pedrosa, M. R.; Fernań dez-Rodríguez, M. A.; Arnaíz, F. J.; Sanz, R. Org. Lett. 2017, 19, 5470.
doi: 10.1021/acs.orglett.7b02792
Liu, H. H.; Duan, T. T.; Zhang, Z. Y.; Xie, C. X.; Ma, C. Org. Lett. 2015, 17, 2932.
doi: 10.1021/acs.orglett.5b01167
(a) Nandwana, N. K.; Pericherla, K.; Kaswan, P.; Kumar, A. Org. Biomol. Chem. 2015, 13, 2947.
(b) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.
(c) Huang, A.; Liu, H. H.; Ma, C. RSC Adv. 2013, 3, 13976.
Yu, J. Q.; Shi, Z. J. C-H Activation, Springer, Berlin, 2010.
(a) Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(b) Wang, C. Y. Synlett 2013, 1606.
(c) Jia, F.; Li, Z. P. Org. Chem. Front. 2014, 1, 194.
(d) Ackermann, L. J. Org. Chem. 2014, 79, 8948.
Bauer, I.; Kn lker, H. J. Chem. Rev. 2015, 115, 3170.
doi: 10.1021/cr500425u
(a) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858.
(b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755.
(c) Gu, Q.; Mamari, H. H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 5268.
Zhang, Z. G.; Li, J. L.; Zhang, G. S.; Ma, N. N.; Liu, Q. F.; Liu, T. X. J. Org. Chem. 2015, 80, 6875.
doi: 10.1021/acs.joc.5b00915
Lade, J. J.; Patil, B. N.; Sathe, P. A.; Vadagaonkar, K. S.; Chetti, P.; Chaskar, A. C. ChemistrySelect. 2017, 2, 6811.
doi: 10.1002/slct.201701383
(a) Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238.
(b) Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 43, 1122.
Lade, J. J.; Patil, B. N.; Vhatkar, M. V.; Vadagaonkar, K. S.; Chaskar, A. C. Asian J. Org. Chem. 2017, 6, 1579.
doi: 10.1002/ajoc.v6.11
An, Z. Y.; Zhao, L. B.; Wu, M. Z.; Ni, J. X.; Qi, Z. J.; Yu, G. Q.; Yan, R. L. Chem. Commun. 2017, 53, 11572.
doi: 10.1039/C7CC07089F
Kobayashi, K.; Matoba, T.; Irisawa, S.; Matsumoto, T.; Morikawa, O.; Konishi, H. Chem. Lett. 1998, 551.
Kobayashi, K.; Irisawa, S.; Matoba, T.; Matsumoto, T.; Yoneda, K.; Morikawa, O.; Konishi, H. Bull. Chem. Soc. Jpn. 2001, 74, 1109.
doi: 10.1246/bcsj.74.1109
Huang, A. P.; Liu, F.; Zhan, C. J.; Liu, Y. L.; Ma, C. Org. Biomol. Chem. 2011, 9, 7351.
doi: 10.1039/c1ob05936j
(a) Zmitek, K.; Zupan, M.; Stavber, S.; Iskra, J. J. Org. Chem. 2007, 72, 6534.
(b) Ren, Y. M.; Cai, C. Org. Prep. Proced. Int. 2008, 40, 101.
(c) Deka, N.; Mariotte, A. M.; Boumendjel, A. Green Chem. 2001, 3, 263.
(d) Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283.
(a) Miller, R. A.; Hoerrner, R. S. Org. Lett. 2003, 5, 285.
(b) Gogoi, P.; Konwar, D. Org. Biomol. Chem. 2005, 3, 3473.
(c) Togo, H.; Iida, S. Synlett 2006, 2159.
Ramamohan, M.; Sridhar, R.; Raghavendrarao, K.; Paradesi, N.; Chandrasekhar, K. B.; Jayaprakash, S. Synlett 2015, 26, 1096.
doi: 10.1055/s-0034-1380347
Naresh, G.; Kant, R.; Narender, T. J. Org. Chem. 2014, 79, 3821.
doi: 10.1021/jo5000797
(a) Li, C. J. Acc. Chem. Res. 2009, 42, 335.
(b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56.
(c) Li, B. J.; Tian, S. L.; Fang, Z.; Shi, Z. J. Angew. Chem., Int. Ed. 2008, 47, 1115.
(d) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H. Y.; Lei, A. W. J. Am. Chem. Soc. 2012, 134, 5766.
Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562.
doi: 10.1021/ja01581a057
(a) Ge, W.; Zhu. X.; Wei, Y. Green Chem. 2012, 14, 2066.
(b) Ashikari, Y.; Shimizu, A.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 16070.
Zhang, Z. Y.; Xie, C. X.; Tan, X. X.; Song, G. L.; Wen, L. L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.
doi: 10.1039/C5QO00124B
(a) Tewari, N.; Katiyar, D.; Tiwari, V. K.; Tripathi, R. P. Tetrahedron Lett. 2003, 44, 6639.
(b) Nisar, M.; Ali, I.; Shah, M. R.; Badshah, A.; Qayum, M.; Khan, H.; Khand, I.; Ali, S. RSC Adv. 2013, 3, 21753.
Kamal, A.; Babu, K. S.; Kovvuri, J.; Manasa, V.; Ravikumar, A. Alarifi, A. Tetrahedron Lett. 2015, 56, 7012.
doi: 10.1016/j.tetlet.2015.11.003
Patel, B.; Hilton, S. T. Synlett 2015, 26, 79.
Xie, C. X.; Feng, L.; Li, W. L.; Ma, X. J.; Ma, X. K.; Liu, Y. H.; Ma, C. Org. Biomol. Chem. 2016, 14, 8529.
doi: 10.1039/C6OB01401A
(a) Roy, S.; Davydova, M. P.; Pal, R.; Gilmore, K.; Tolstikov, G. A.; Vasilevsky, S. F.; Alabugin, I. V. J. Org. Chem. 2011, 76, 7482.
(b) Mayo, M. S.; Yu, X.; Zhou, X.; Yamamoto, Y.; Bao, M. J. Org. Chem. 2014, 79, 6310.
(c) Li, Z. W.; Dong, J. Y.; Chen, X. L.; Li, Q.; Zhou, Y. B.; Yin, S. F. J. Org. Chem. 2015, 80, 9392.
(a) Pinaka, A.; Vougioukalakis, G. C. Coord. Chem. Rev. 2015, 288, 69.
(b) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
(c) Huang, K.; Sun, C. L.; Shi, Z. J. Chem. Soc. Rev. 2011, 40, 2435.
(d) Wang, S.; Du, G. X.; Xi, C. J. Org. Biomol. Chem. 2016, 14, 3666.
(e) Martín, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259.
(a) Chauvier, C.; Tlili, A.; Das Neves Gomes, C.; Thuéry, P.; Cantat, T. Chem. Sci. 2015, 6, 2938.
(b) Wang, X.; Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2015, 137, 8924.
(c) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
(d) Chong, C. C.; Kinjo, R. Angew. Chem., Int. Ed. 2015, 54, 12116.
Wang, S.; Shao, P.; Du, G. X.; Xi, C. J. J. Org. Chem. 2016, 81, 6672.
doi: 10.1021/acs.joc.6b01318
(a) Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257.
(b) Largeron, M.; Fleury, M. B. Science 2013, 339, 43.
(c) Hao, W. J.; Wang, J. Q.; Xu, X. P.; Zhang, S. L.; Wang, S. Y.; Ji, S. J. J. Org. Chem. 2013, 78, 12362.
(d) Matsumoto, K.; Dougomori, K.; Tachikawa, S.; Ishii, T.; Shindo, M. Org. Lett. 2014, 16, 4754.
(a) Zhang, C.; Zhang, L. R.; Jiao, N. Green Chem. 2012, 14, 3273.
(b) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2003, 15, 2713.
(c) Lee, Y. S.; Cho, Y. H.; Lee, S.; Bin, J. K.; Yang, J.; Chae, G.; Cheon, C. H. Tetrahedron 2015, 71, 532.
Wang, C.; Li, Y.; Zhao, J. F.; Cheng, B.; Wang, H. F.; Zhai, H. B. Tetrahedron Lett. 2016, 57. 3908.
doi: 10.1016/j.tetlet.2016.07.041
Xie, C. X.; Zhang, Z. Y.; Li, D. Y.; Gong, J.; Han, X. S.; Liu, X.; Ma, C. J. Org. Chem. 2017, 82, 3491.
doi: 10.1021/acs.joc.6b02977
(a) Tradtrantip, L.; Sonawane, N. D.; Namkung, W.; Verkman, A. S. J. Med. Chem. 2009, 52, 6447.
(b) Szabó, G.; Kiss, R.; Páyer-Lengyel, D.; Vukics, K.; Szikra, J. Bioorg. Med. Chem. Lett. 2009, 19, 3471.
(a) Bongers, N.; Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178.
(b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
(c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
(d) Skouta, R.; Li, C. J. Tetrahedron 2008, 64, 4917.
Liu, G. N.; Zhou, Y.; Lin, D. Z.; Wang, J. F.; Zhang, L.; Jiang, H. L.; Liu, H. ACS Comb. Sci. 2011, 13, 209.
doi: 10.1021/co1000844
(a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
(b) Lorenz, M.; Van Linn, M. L.; Cook, J. M. Curr. Org. Synth. 2010, 7, 189.
(a) Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538.
(b) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.
(c) Seayad, J. Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086.
(d) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404.
(e) Cai, Q.; Liang, X. W.; Wang, S. G.; Zhang, J. W.; Zhang, X.; You, S. L. Org. Lett. 2012, 14, 5022.
Li, Y.; Su, Y. H.; Dong, D. J.; Wu, Z.; Tian, S. K. RSC Adv. 2013, 3, 18275.
doi: 10.1039/c3ra43248c
(a) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3, 1819.
(b) Müler, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
(a) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
(b) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5372.
(c) LaLonde, R. L.; Wang, Z. J.; Mba, M.; Lackner, A. D.; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 598.
Shinde, V. S.; Mane, M. V.; Vanka, K.; Mallick, A.; Patil, N. T. Chem.-Eur. J. 2015, 21, 975.
doi: 10.1002/chem.201405061
(a) Li, C. J. Chem. Rev. 2005, 105, 3095.
(b) Li, C. J.; Chang, T. H. Organic Reactions in Aqueous Media, Wiley, New York, 1997.
Kamal, A.; Babu, K. S.; Ali Hussaini, S. M.; Srikanth, P. S.; Balakrishna, M.; Alarifi, A. Tetrahedron Lett. 2015, 56, 4619.
doi: 10.1016/j.tetlet.2015.06.006
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.
doi: 10.1038/414625a
Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
doi: 10.1126/science.1161976
Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/B913880N
Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.
doi: 10.1021/ja805387f
Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.
doi: 10.1021/ja9033582
He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451.
doi: 10.1002/anie.201408522
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459