Citation: Fan Xin, Yi Rong, Wang Fang, Zhang Xu, Xu Qing, Yu Lei. Copper-Catalyzed Selectivity-Switchable Dehydration/Beckmann Rearrangement Reactions of Aldoxime[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2736-2740. doi: 10.6023/cjoc201805044 shu

Copper-Catalyzed Selectivity-Switchable Dehydration/Beckmann Rearrangement Reactions of Aldoxime

  • Corresponding author: Zhang Xu, zhangxu@yzu.edu.cn Yu Lei, yulei@yzu.edu.cn
  • Received Date: 22 May 2018
    Revised Date: 11 June 2018
    Available Online: 15 October 2018

    Fund Project: the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Natural Science Foundation of Guangling College ZKZD17005the National Natural Science Foundation of China 21202141Project supported by the National Natural Science Foundation of China (No. 21202141), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Natural Science Foundation of Guangling College (No. ZKZD17005)

Figures(2)

  • It was found that, copper as a cheap metal, could well catalyze the dehydration reaction of aldoximes to organonitriles in nitrile solvent by using MnO2 as the co-catalyst and PPh3 as the ligand. In contrast, instead of organonitriles, the Cu-catalyzed reactions of the aldoximes in water led to amides, which were the products of the Beckmann rearrangements. These interesting selectivity-switchable reactions afford easy accesses to the related useful organic compounds and may be of both academic and practical values.
  • 加载中
    1. [1]

      (a) Bolotin, D. S. ; Bokach, N. A. ; Demakova, M. Y. ; Kukushkin, V. Y. Chem. Rev. 2017, 117, 13039.
      (b) Kö lmel, D. K. ; Kool, E. T. Chem. Rev. 2017, 117, 10358.
      (c) Huang, G. ; Meng, Q. -Q. ; Zhou, W. ; Zhang, Q. -J. ; Dong, J. -Y. ; Li, S. -S. Chin. Chem. Lett. 2017, 28, 453.
      (d) Dai, H. ; Yao, W. ; Sun, S. -Y. ; Li, L. ; Shi, L. ; Qian, H. -W. ; Li, C. -J. ; Shi, J. ; Shi, Y. -J. Chin. J. Org. Chem. 2017, 37, 3155(in Chinese).
      (戴红, 姚炜, 孙思宇, 李玲, 施磊, 钱宏炜, 李春建, 石健, 石玉军, 有机化学, 2017, 37, 3155. )
      (e) Beniwal, S. ; Chhimpa, S. ; Gaur, D. ; John, P. J. ; Singh, Y. ; Sharma, J. Appl. Organomet. Chem. 2017, 31, e3725.
      (f) Palepu, N. R. ; Adhikari, S. ; Premkumar J, R. ; Verma, A. K. ; Shepherd, S. L. ; Phillips, R. M. ; Kaminsky, W. ; Kollipara, M. R. Appl. Organomet. Chem. 2017, 31, e3640.

    2. [2]

      (a) Yan, G. -B. ; Zhang, Y. ; Wang, J. -B. Adv. Synth. Catal. 2017, 359, 4068.
      (b) Ping, Y. -Y. ; Wang, L. -P. ; Ding, Q. -P. ; Peng, Y. -Y. Adv. Synth. Catal. 2017, 359, 3274.
      (c) Pearson-Long, M. S. M. ; Boeda, F. ; Bertus, P. Adv. Synth. Catal. 2017, 359, 179.
      (d) Ma, X. -T. ; Xu, H. ; Xiao, Y. -L. ; Su, C. -L. ; Liu, J. -P. ; Xu, Q. Chin. Chem. Lett. 2017, 28, 1336.
      (e) Hu, P. ; Chai, J. -C. ; Duan, Y. -L. ; Liu, Z. -H. ; Cui, G. -L. ; Chen, L. -Q. J. Mater. Chem. A 2016, 4, 10070.
      (f) Bagal, D. B. ; Bhanage, B. M. Adv. Synth. Catal. 2015, 357, 883.
      (g) Yu, L. ; Wang, J. ; Cao, H. -E. ; Ding, K. -H. ; Xu, Q. Chin. J. Org. Chem. 2014, 34, 1986(in Chinese).
      (俞磊, 王俊, 曹洪恩, 丁克鸿, 徐清, 有机化学, 2014, 34, 1986. )

    3. [3]

      Corey, E. J.; Hopkins, P. B.; Kim, S.; Yoo, S. E.; Nambiar, K. P.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 7131.  doi: 10.1021/ja00517a088

    4. [4]

      Williams, D. G. The Chemistry of Essential Oils: An Introduction for Aromatherapists, Beauticians, Retailers and Students, Micelles Press, Dorset, 2008.

    5. [5]

      (a) Wu, W. -L. ; Sun, W. -P. Sci. Bull. 2016, 61, 1892.
      (b) Szostak, M. ; Spain, M. ; Eberhart, A. J. ; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 2268.
      (c) Ye, S. -J. ; Li, H. -C. ; Yang, W. -L. ; Luo, Y. J. Am. Chem. Soc. 2014, 136, 1206.
      (d) Bechara, W. S. ; Pelletier, G. ; Charette, A. B. Nat. Chem. 2012, 4, 228.

    6. [6]

      (a) Zhang, D. -L. ; Wei, Z. ; Yu, L. Sci. Bull. 2017, 62, 1325.
      (b) Wang, F. ; Xu, L. ; Sun, C. ; Xu, Q. ; Huang, J. -J. ; Yu, L. Chin. J. Org. Chem. 2017, 37, 2115(in Chinese).
      (王芳, 徐林, 孙诚, 徐清, 黄杰军, 俞磊, 有机化学, 2017, 37, 2115. )
      (c) Tong, Q. ; Gao, Q. ; Xu, B. -L. ; Yu, L. ; Fan, Y. -N. Chin. J. Org. Chem. 2017, 37, 753(in Chinese).
      (仝庆, 高强, 许波连, 俞磊, 范以宁, 有机化学, 2017, 37, 753. )
      (d) Zhou, H. -L. ; Gong, J. -J. ; Xu, B. -L. ; Deng, S. -C. ; Ding, Y. -H. ; Yu, L. ; Fan, Y. -N. Chin. J. Catal. 2017, 38, 529.
      (e) Wang, Y. -G. ; Yu, L. -H. ; Zhu, B. -C. ; Yu, L. J. Mater. Chem. A 2016, 4, 10828.
      (f) Yu, L. ; Chen, F. -L. ; Ding, Y. -H. ChemCatChem 2016, 8, 1033.
      (g) Deng, S. -C. ; Zhuang, K. ; Xu, B. -L. ; Ding, Y. -H. ; Yu, L. ; Fan, Y. -N. Catal. Sci. Technol. 2016, 6, 1772.
      (h) Xu, Q. ; Xie, H. -M. ; Chen, P. -L. ; Yu, L. ; Chen, J. -H. ; Hu, X. -G. Green Chem. 2015, 17, 2774.

    7. [7]

      (a) Sun, J. -J. ; He, Y. -Y. ; An, X. -D. ; Zhang, X. ; Yu, L. ; Yu, S. -Y. Org. Chem. Front. 2018, 5, 977.
      (b) Zhang, D. -L. ; Huang, Y. -P. ; Zhang, E. -L. ; Yi, R. ; Chen, C. ; Yu, L. ; Xu, Q. Adv. Synth. Catal. 2018, 360, 784.
      (c) Wang, Y. -G. ; Wu, Z. -L. ; Li, Q. ; Zhu, B. -C. ; Yu, L. Catal. Sci. Technol. 2017, 7, 3747.
      (d) Jing, X. -B. ; Wang, T. -T. ; Ding, Y. -H. ; Yu, L. Appl. Catal. A-Gen. 2017, 541, 107.
      (e) Jing, X. -B. ; Yuan, D. -D. ; Yu, L. Adv. Synth. Catal. 2017, 359, 1194.
      (f) Zhang, X. ; Sun, J. -J. ; Ding, Y. -H. ; Yu, L. Org. Lett. 2015, 17, 5840.
      (g) Yu, L. ; Li, H. -Y. ; Zhang, X. ; Ye, J. -Q. ; Liu, J. -P. ; Xu, Q. ; Lautens, M. Org. Lett. 2014, 16, 1346.
      (h) Chen, H. -N. ; Dai, W. -J. ; Chen, Y. ; Xu, Q. ; Chen, J. -H. ; Yu, L. ; Zhao, Y. -J. ; Ye, M. -D. ; Pan, Y. -J. Green Chem. 2014, 16, 2136.
      (i) Yu, L. ; Wang, J. ; Zhang, X. ; Cao, H. -E. ; Wang, G. -L. ; Ding, K. -H. ; Xu, Q. ; Lautens, M. RSC Adv. 2014, 4, 19122.

    8. [8]

      (a) Wu, J. -L. ; Liu, Y. ; Ma, X. -W. ; Liu, P. ; Gu, C. -Z. ; Dai, B. Chin. J. Chem. 2017, 35, 1391.
      (b) Song, P. ; Barkholtz, H. M. ; Wang, Y. ; Xu, W. -L. ; Liu, D. -J. ; Zhuang, L. Sci. Bull. 2017, 62, 1602.
      (c) Luo, G. ; Wang, Y. ; Li, Y. -F. Sci. Bull. 2017, 62, 1337.
      (d) Kazemi, S. ; Mobinikhaledi, A. ; Zendehdel, M. Chin. Chem. Lett. 2017, 28, 1767.
      (e) Xuan, Q. -Q. ; Wei, Y. -H. ; Song, Q. -L. Chin. Chem. Lett. 2017, 28, 1163.
      (f) Ren, Y. -X. ; Sun, W. -P. Sci. Bull. 2016, 61, 1791.
      (g) Cui, H. -Z. ; Gu, Y. -Q. ; He, X. -X. ; Wei, S. ; Jin, Z. ; Jia, C. -J. ; Song, Q. -S. Sci. Bull. 2016, 61, 220.
      (h) Chen, J. ; Zhao, D. -M. ; Diao, Z. -D. ; Wang, M. ; Shen, S. -H. Sci. Bull. 2016, 61, 292.
      (i) Li, J. ; Qian, L. -P. ; Hu, L. -Y. ; Yue, B. ; He, H. -Y. Chin. Chem. Lett. 2016, 27, 1004.

    9. [9]

      Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Angew. Chem., Int. Ed. 2015, 54, 8515.  doi: 10.1002/anie.201503112

    10. [10]

      Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293.  doi: 10.1021/jacs.7b01232

    11. [11]

      Spectral Database for Organic Compounds (SDBS): http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.

  • 加载中
    1. [1]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    7. [7]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    8. [8]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    9. [9]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    10. [10]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    11. [11]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    12. [12]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    13. [13]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    14. [14]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

Metrics
  • PDF Downloads(10)
  • Abstract views(1223)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return