Citation: Xu Wenxiu, Dai Xiaoqiang, Xu Hanjing, Weng Jianquan. Application of Oxime Organic Dyes in Visible-Light-Induced Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 2807-2832. doi: 10.6023/cjoc201805031 shu

Application of Oxime Organic Dyes in Visible-Light-Induced Organic Synthesis

  • Corresponding author: Weng Jianquan, jqweng@zjut.edu.cn
  • Received Date: 15 May 2018
    Revised Date: 15 June 2018
    Available Online: 16 November 2018

    Fund Project: the Natural Science Foundation of Zhejiang Province LY17C140003Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003)

Figures(27)

  • Oxime organic dyes, acting as photoredox catalysts, are widely used in visible-light-induced organic synthesis due to their advantages of low cost, good water solubility, high reactivity and so on. The type of organic dyes-catalyzed organic reactions is continuously expanding, and there is a tendency that organic dyes are gradually replacing some of transition metal catalysts. Classified by the type of reactions, the research progress of several common organic dyes in visible-light-induced organic synthesis in recent years is reviewed, and their future outlook is also discussed.
  • 加载中
    1. [1]

      (a) Ciamician, G. Sci. New Ser. 1912, 36, 385.
      (b) Grätzel, M. Nature 2001, 414, 338.
      (c) Nocera, A. Chem. Rev. 2007, 107, 4022.
      (d) Albini, A.; Fagnoni, M. ChemSusChem 2008, 1, 63.
      (e) Yum, J.-H.; Chen, P.; Gratzel, M.; Nazeeruddin, M. ChemSusChem 2008, 1, 699.
      (f) Sala, X.; Romero, I.; Rodriguez, M.; Escriche, L.; Llobet, A. Angew. Chem., Int. Ed. 2009, 48, 2842.

    2. [2]

      (a) Zen, J.-M.; Liu, S.-L.; Annamalai, M.-S. Angew. Chem., Int. Ed. 2003, 42, 577.
      (b) Hirao, T.; Shiori, J.; Okahata, N. Bull. Chem. Soc. Jpn. 2004, 77, 1763.
      (c) Herance, J.; Ferrer, B.; Bourdelande, J.; Marquet, J.; Garcia, H. Chemistry 2006, 12, 3890.
      (d) Masahisa, O.; Han, N.; Munetaka, A. Royl. Soc. Chem. 2007, 8, 827.

    3. [3]

      (a) Li, L.-T.; Ma, S.-M. J. Org. Chem. 2001, 21, 75(in Chinese).
      (李林涛, 麻生明, 有机化学, 2001, 21, 75.)
      (b) Weng, J.-Q.; Liu, X.-H.; Zhang, G.-F.; Tan, C.-X.; Ding, C.-R.; Ou, X.-M. Chin. J. Org. Chem. 2011, 31, 374(in Chinese).
      (翁建全, 刘幸海, 张国富, 谭成侠, 丁成荣, 欧晓明, 有机化学, 2011, 31, 374.)
      (c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
      (d) Hering, T.; Hari, D. P.; Konig, B. J. Org. Chem. 2012, 77, 10347.
      (e) Schroll, P.; Hari, D. P.; Konig, B. Chem. Open 2012, 1, 130.
      (f) Huang, L.; Zhao, J. Chem. Commun. 2013, 49, 3751.
      (g) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
      (h) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
      (i) Hari, D. P.; Hering, T.; Konig, B. Angew. Chem., Int. Ed. 2014, 53, 725.
      (j) Liu, H.; Zhao, L.; Yuan, Y.; Xu, Z.; Chen, K.; Qiu, S.; Tan, H. ACS Catal. 2016, 6, 1732.
      (h) Ren, X.; Guo, Q.; Chen, J.; Xie, H.; Xu, Q.; Lu, Z. Chemistry 2016, 22, 18695.

    4. [4]

      (a) Tang, S.-S.; Zhang, N.; Zhu, J. Ind. Catal. 2005, 13, 21(in Chinese).
      (汤胜山, 张宁, 朱静, 工业催化, 2005, 13, 21.)
      (b) Zhang, N.; Zhang, Y.-H.; Pan, X.-Y.; Fu, X.-Z.; Xu, Y.-J. Sci. China Chem. 2011, 41, 1097(in Chinese).
      (张楠, 张燕辉, 潘晓阳, 付贤智, 徐艺军, 中国科学: 化学, 2011, 41, 1097.)
      (b) Cui, E. T.; Lu, G. X. J. Phys. Chem. C 2013, 117, 26415.
      (c) Meng, Q. Y.; Zhong, J. J.; Liu, Q.; Gao, X. W.; Zhang, H. H.; Lei, T.; Li, Z. J.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2013, 135, 19052.
      (c) Kong, C.; Min, S. X.; Lu, G. X. ACS Catal. 2014, 4, 2763.
      (d) Bhat, V. T.; Duspara, P. A.; Seo, S.; Abu Bakar, N. S. B.; Greaney, M. F. Chem. Commun. 2015, 51, 4383.
      (e) Li, X. R.; Li, Y. Y.; Huang, Y. X.; Zhang, T.; Liu, Y. Z.; Yang, B.; He, C. X.; Zhou, X. C.; Zhang, J. M. Green Chem. 2017, 19, 2925.
      (f) Liu, D.; Zhang, C.-H.; Han, N.; Du. M.-M.; Zhang, X.-L.; Zhao, P.-S.; Yang, P. Chin. J. Org. Chem. 2018, 38, 62(in Chinese).
      (张成慧, 韩楠, 杜萌萌, 张效露, 赵朋杉, 杨萍, 刘迪, 有机化学, 2018, 38, 62.)

    5. [5]

      (a) Yuan, D.-Z.; Hhuang, B. Chin. J. Org. Chem. 2012, 32, 1368(in Chinese).
      (袁定重, 黄斌, 有机化学, 2012, 32, 1368.)
      (b) Yin, J.; Liao, G.-Z.; Zhu, D.-Y.; Lu, P.; Li, L.-S. China Environ. Sci. 2016, 36, 735(in Chinese).
      (尹竞, 廖高祖, 朱冬韵, 卢平, 李来胜, 中国环境科学, 2016, 36, 735.)
      (c) Dai, X.-W.; Wu, J.; Qi, X.-M.; Wu, Q.; Li, X. Res. Environ. Sci. 2014, 27, 827(in Chinese).
      (代学伟, 吴江, 齐雪梅, 吴强, 何平, 李忺, 环境科学研究, 2014, 27, 827.)

    6. [6]

      Tang, T.; Wei, P.-F.; Li, L.; Yang, F.-K. Chem. Word 2018, 59, 144(in Chinese).
       

    7. [7]

      Yadav, L.; Srivastava, V.; Yadav, A. Synlett 2013, 24, 465.

    8. [8]

      (a) Ravelli, D.; Fagnoni, M. ChemCatChem 2012, 4, 169.
      (b) Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195.
      (c) Hari, D. P.; Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734.
      (d) Huang, L.; Zhao, J. RSC Adv. 2013, 3, 23377.
      (e) Arbeloa, E. M.; Previtali, C. M.; Bertolotti, S. G. J. Lumin. 2016, 180, 369.

    9. [9]

      Chu, Z.-Y.; Yuan, B.; Yan, Y.-N. J. Inorg. Mater. 2014, 29, 785(in Chinese).
       

    10. [10]

      Sandrine, F.; Daniel, L.; Carlo, A. J. Phys. Chem. A 2008, 112, 7264.  doi: 10.1021/jp8011624

    11. [11]

      Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.  doi: 10.1039/C2CS35250H

    12. [12]

      Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059.  doi: 10.1039/C4OB00843J

    13. [13]

      (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2013, 4, 355.
      (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.

    14. [14]

      Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.  doi: 10.1039/C4CC00751D

    15. [15]

      Srivastava, V.; Singh, P. P. RSC Adv. 2017, 7, 31377.  doi: 10.1039/C7RA05444K

    16. [16]

      Cheng, X.-K.; Hu, X.-G.; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251(in Chinese).
       

    17. [17]

      Neumann, M.; Fuldner, S.; König, B.; Zeitler, K. Angew. Chem., Int. Ed. 2011, 50, 951.  doi: 10.1002/anie.201002992

    18. [18]

      Pan, Y.; Kee, C. W.; Chen, L.; Tan, C. H. Green Chem. 2011, 13, 2682.  doi: 10.1039/c1gc15489c

    19. [19]

      Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C. H. Green Chem. 2011, 13, 3341.  doi: 10.1039/c1gc15865a

    20. [20]

      Liu, Q.; Li, Y. N.; Zhang, H. H.; Chen, B.; Tung, C. H.; Wu, L. Z. Chemistry 2012, 18, 620.  doi: 10.1002/chem.v18.2

    21. [21]

      Fu, W.; Guo, W.; Zou, G.; Xu, C. J. Fluorine Chem. 2012, 140, 88.  doi: 10.1016/j.jfluchem.2012.05.009

    22. [22]

      Vila, C.; Bootwicha, T.; Rueping, M. ACS Catal. 2013, 3, 1676.  doi: 10.1021/cs400350j

    23. [23]

      Keshari, T.; Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.  doi: 10.1039/C4GC00857J

    24. [24]

      Cantillo, D.; Frutos, O.; Rincon, J. A.; Mateos, C.; Kappe, C. O. Org. Lett. 2014, 16, 896.  doi: 10.1021/ol403650y

    25. [25]

      Li, X.; Gu, X.; Li, Y.; Li, P. ACS Catal. 2014, 4, 1897.  doi: 10.1021/cs5005129

    26. [26]

      Jadhav, S. D.; Bakshi, D.; Singh, A. J. Org. Chem. 2015, 80, 10187.  doi: 10.1021/acs.joc.5b01736

    27. [27]

      Li, J.; Zhang, J.; Tan, H. B.; Wang, D. Z. Org. Lett. 2015, 17, 2522.  doi: 10.1021/acs.orglett.5b01053

    28. [28]

      Fuentes de Arriba, A. L.; Urbitsch, F.; Dixon, D. J. Chem. Commun. (Camb) 2016, 52, 14434.  doi: 10.1039/C6CC09172E

    29. [29]

      Schwarz, J.; König, B. Green Chem. 2016, 18, 4743.  doi: 10.1039/C6GC01101B

    30. [30]

      Wang, K.; Meng, L. G.; Wang, L. J. Org. Chem. 2016, 81, 7080.  doi: 10.1021/acs.joc.6b00973

    31. [31]

      Zhang, N.; Quan, Z. J.; Zhang, Z.; Da, Y. X.; Wang, X. C. Chem. Commun (Camb). 2016, 52, 14234.  doi: 10.1039/C6CC08182G

    32. [32]

      Zhao, D.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 3166.  doi: 10.1002/anie.201511251

    33. [33]

      Meyer, A. U.; Slanina, T.; Yao, C. J.; König, B. ACS Catal. 2016, 6, 369.  doi: 10.1021/acscatal.5b02410

    34. [34]

      Ghosh, I.; BurkhardKonig Angew. Chem., Int. Ed. 2016, 55, 7676. 

    35. [35]

      Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Acc. Chem. Res. 2016, 49, 1566.  doi: 10.1021/acs.accounts.6b00229

    36. [36]

      Garrido, A. F.; Choubane, H.; Daaou, M.; Maestro, M. C.; Aleman, J. Chem. Commun. 2017, 53, 7764.  doi: 10.1039/C7CC03724D

    37. [37]

      Wu, L. L.; Tang, L.; Zhou, S. G.; Peng, Y. J.; He, X. D.; Guan, Z.; He, Y. H. Tetrahedron 2017, 73, 6471.  doi: 10.1016/j.tet.2017.09.050

    38. [38]

      Zhu, J.; Yuan, Y.; Wang, S.; Yao, Z.-J. ACS Omega 2017, 2, 4665.  doi: 10.1021/acsomega.7b00749

    39. [39]

      Graml, A.; Ghosh, I.; König, B. J. Org. Chem. 2017, 82, 3552.  doi: 10.1021/acs.joc.7b00088

    40. [40]

      Pramanik, M. M. D.; Nagode, S. B.; Kant, R.; Rastogi, N. Org. Biomol. Chem. 2017, 15, 7369.  doi: 10.1039/C7OB01756A

    41. [41]

      Fan, X. Z.; Rong, J. W.; Wu, H. L.; Zhou, Q.; Deng, H. P.; Tan, J. D.; Xue, C. W.; Wu, L. Z.; Tao, H. R.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 1.  doi: 10.1002/anie.201712460

    42. [42]

      Liu, H.; Feng, W.; Kee, C. W.; Zhao, Y.; Leow, D.; Pan, Y.; Tan, C. H. Green. Chem. 2010, 12, 953.  doi: 10.1039/b924609f

    43. [43]

      Gu, X.; Li, X.; Chai, Y.; Yang, Q.; Li, P.; Yao, Y. Green Chem. 2013, 15, 357.  doi: 10.1039/c2gc36683e

    44. [44]

      Teo, Y. C.; Pan, Y.; Tan, C. H. ChemCatChem. 2013, 5, 235.  doi: 10.1002/cctc.201200435

    45. [45]

      Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 8275.  doi: 10.1021/acs.joc.5b01369

    46. [46]

      Meyer, A. U.; Jäger, S.; Prasad, Hari. D.; König, B. Adv. Synth. Catal. 2015, 357, 2050.  doi: 10.1002/adsc.v357.9

    47. [47]

      Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green Chem. 2016, 18, 5630.  doi: 10.1039/C6GC01403H

    48. [48]

      Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.  doi: 10.1021/acs.orglett.6b01353

    49. [49]

      Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Chem. Sci. 2016, 7, 6740.  doi: 10.1039/C6SC02132H

    50. [50]

      Huang, F.-Q.; Dong, X.; Qi, L.-W.; Zhang, B. Tetrahedron Lett. 2016, 57, 1600.  doi: 10.1016/j.tetlet.2016.02.108

    51. [51]

      Liu, X.; Qing, Z.; Cheng, P.; Zheng, X.; Zeng, J.; Xie, H. Molecules 2016, 21, 1690.  doi: 10.3390/molecules21121690

    52. [52]

      Zhang, M. J.; Schroeder, G. M.; He, Y. H.; Guan, Z. RSC Adv. 2016, 6, 96693.  doi: 10.1039/C6RA17524D

    53. [53]

      Luo, K.; Chen, Y. Z.; Yang, W. C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.  doi: 10.1021/acs.orglett.5b03497

    54. [54]

      Shaikh, R. S.; Düsel, S. J. S.; König, B. ACS Catal. 2016, 6, 8410.  doi: 10.1021/acscatal.6b02591

    55. [55]

      Ghosh, T.; Das, A.; König, B. Org. Biomol. Chem. 2017, 15, 2536.  doi: 10.1039/C7OB00250E

    56. [56]

      Guerrero-Corella, A.; Maria Martinez-Gualda, A.; Ahmadi, F.; Ming, E.; Fraile, A.; Aleman, J. Chem. Commun. (Camb). 2017, 53, 10463.  doi: 10.1039/C7CC05672A

    57. [57]

      Hong, B.; Lee, J.; Lee, A. Tetrahedron Lett. 2017, 58, 2809.  doi: 10.1016/j.tetlet.2017.06.006

    58. [58]

      Li, Y.; Wang, M.; Jiang, X. ACS Catal. 2017, 7, 7587.  doi: 10.1021/acscatal.7b02735

    59. [59]

      Yu, X.; Zhou, F.; Chen, J.; Xiao, W. Acta Chim. Sinica 2017, 75, 86(in Chinese).
       

    60. [60]

      Zhang, R.; Cai, Y.; Sun, D.; Xu, S.; Zhou, Q. Synlett 2017, 28, 1630.  doi: 10.1055/s-0036-1588828

    61. [61]

      Zhang, Z.; Liu, F.; Bao, Z.; Su, B.; Xing, H.; Yang, Q.; Yang, Y.; Ren, Q. Synlett 2017, 28, 1116.  doi: 10.1055/s-0036-1588704

    62. [62]

      Tibbetts, J. D.; Carbery, D. R.; Emanuelsson, E. A. C. ACS Sustainable Chem. Eng. 2017, 5, 9826.  doi: 10.1021/acssuschemeng.7b01754

    63. [63]

      Cui, H.; Wei, W.; Yang, D.; Zhang, Y.; Zhao, H.; Wang, L.; Wang, H. Green Chem. 2017, 19, 3520.  doi: 10.1039/C7GC01416C

    64. [64]

      Bottecchia, C.; Rubens, M.; Gunnoo, S. B.; Hessel, V.; Madder, A.; Noel, T. Angew. Chem., Int. Ed. 2017, 56, 12702.  doi: 10.1002/anie.201706700

    65. [65]

      Zhu, J.; Cui, W. C.; Wang, S.; Yao, Z. J. Org. Lett. 2018, 20, 3174.  doi: 10.1021/acs.orglett.8b00909

    66. [66]

      Guo, W.; Lu, L. Q.; Wang, Y.; Wang, Y. N.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 2265.  doi: 10.1002/anie.201408837

    67. [67]

      Gu, L.; Jin, C.; Liu, J. Green Chem. 2015, 17, 3733.  doi: 10.1039/C5GC00644A

    68. [68]

      Majek, M.; Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 2270.  doi: 10.1002/anie.201408516

    69. [69]

      Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt M.; Wacharasindhu, S. Tetrahedron 2016, 72, 788.  doi: 10.1016/j.tet.2015.12.036

    70. [70]

      Sun, J. G.; Yang, H.; Li, P.; Zhang, B. Org. Lett. 2016, 18, 5114.  doi: 10.1021/acs.orglett.6b02563

    71. [71]

      Kalaitzakis, D.; Montagnon, T.; Alexopoulou, I.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2012, 51, 8868.  doi: 10.1002/anie.v51.35

    72. [72]

      Gong, Q.; Luo, H.; Cao, D.; Zhang, H.; Wang, W.; Zhou, X. B. Korean. Chem. Soc. 2012, 33, 1945.  doi: 10.5012/bkcs.2012.33.6.1945

    73. [73]

      Chen, L.; Chao, C. S.; Pan, Y.; Dong, S.; Teo, Y. C.; Wang, J.; Tan. C. H. Org. Biomol. Chem. 2013, 11, 5922.  doi: 10.1039/c3ob41091a

    74. [74]

      Vila, C.; Lau, J.; Rueping, M. Beilstein J. Org. Chem. 2014, 10, 1233.  doi: 10.3762/bjoc.10.122

    75. [75]

      Wang, L.; Ma, Z. G.; Wei, X. J.; Meng, Q. Y.; Yang, D. T.; Du, S. F.; Chen, Z. F.; Wu, L. Z.; Liu, Q. Green Chem. 2014, 16, 3752.  doi: 10.1039/C4GC00337C

    76. [76]

      Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z. W.; Zhou, L. Green Chem. 2014, 16, 2418.  doi: 10.1039/C3GC42517G

    77. [77]

      Gu, L.; Jin, C.; Liu, J.; Ding, H.; Fan, B. Chem. Commun. 2014, 50, 4643.  doi: 10.1039/C4CC01487A

    78. [78]

      Yoshioka, E.; Jichu, T.; Fukazawa, T.; Nagai, T.; Takemoto, Y.; Kohtani, S.; Miyabe, H. Synlett 2014, 26, 265.

    79. [79]

      Liang, Z.; Xu, S.; Tian, W.; Zhang, R. J. Org. Chem. 2015, 11, 425.
       

    80. [80]

      Shen, Z. C.; Yang, P.; Tang, Y. J. Org. Chem. 2015, 81, 309.

    81. [81]

      Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017.  doi: 10.1002/anie.201507641

    82. [82]

      Yadav, A. K.; Yadav, L. D. S. Green Chem. 2015, 17, 3515.  doi: 10.1039/C5GC00642B

    83. [83]

      Yadav, L.; Kapoorr, R.; Singh, S.; Tripathi, S. Synlett 2015, 26, 1201.  doi: 10.1055/s-00000083

    84. [84]

      Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. (Camb.) 2015, 51, 7520.  doi: 10.1039/C5CC00878F

    85. [85]

      Yang, Z.; Li, H.; Zhang, L.; Zhang, M. T.; Cheng, J. P.; Luo, S. Chemistry 2015, 21, 14723.  doi: 10.1002/chem.201503118

    86. [86]

      Yadav, A. K.; Yadav, L. D. S. Green Chem. 2016, 18, 4240.  doi: 10.1039/C6GC00924G

    87. [87]

      Kovvuri, J.; Nagaraju, B.; Kamal, A.; Srivastava, A. K. ACS Comb. Sci. 2016, 18, 644.  doi: 10.1021/acscombsci.6b00107

    88. [88]

      Quint, V.; Morlet-Savary, F.; Lohier, J. F.; Lalevee, J.; Gaumont, A. C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436.  doi: 10.1021/jacs.6b04069

    89. [89]

      Rohokale, R. S.; Koenig, B.; Dhavale, D. D. J. Org. Chem. 2016, 81, 7121.  doi: 10.1021/acs.joc.6b00979

    90. [90]

      Das, A.; Ghosh, I.; König, B. Chem. Commun. 2016, 52, 8695.  doi: 10.1039/C6CC04366F

    91. [91]

      Borpatra, P. J.; Deb, M. L.; Baruah, P. K. Tetrahedron Lett 2017, 58, 4006.  doi: 10.1016/j.tetlet.2017.09.018

    92. [92]

      Huang, M.-H.; Zhu, Y.-L.; Hao, W.-J.; Wang, A.-F.; Wang, D.-C.; Liu, F.; Wei, P.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2017, 359, 2229.  doi: 10.1002/adsc.v359.13

    93. [93]

      Liu, D.; Chen, J. Q.; Wang, X. Z.; Xu, P. F. Adv. Synth. Catal. 2017, 359, 2773.  doi: 10.1002/adsc.v359.16

    94. [94]

      Jin, C.; Su, L.; Ma, D.; Cheng, M. New J. Chem. 2017, 41, 14053.  doi: 10.1039/C7NJ03144K

    95. [95]

      Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.  doi: 10.1039/C7GC02330H

    96. [96]

      Mondal, R. R.; Khamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964.  doi: 10.1021/acs.orglett.7b02844

    97. [97]

      Wu, L. L.; Yang, G. H.; Guan, Z.; He, Y. H. Tetrahedron 2017, 73, 1854.  doi: 10.1016/j.tet.2017.02.035

    98. [98]

      Sun, D.; Yin, K.; Zhang, R. Chem. Commun. (Camb.) 2018, 54, 1335.  doi: 10.1039/C7CC09410H

    99. [99]

      Diao, P.; Ge, Y.; zhang, W.; Xu, C.; Zhang, N.; Guo, C. Tetrahedron Lett. 2018, 59, 767.  doi: 10.1016/j.tetlet.2018.01.037

    100. [100]

      Alberti, M. N.; Vougioukalakis, G. C.; Orfanopoulos, M. J. Org. Chem. 2009, 74, 7274.  doi: 10.1021/jo9012942

    101. [101]

      Griesbeck, A. G.; Steinwascher, J.; Reckenthäler, M.; Uhlig, J. Res. Chem. Intermed. 2012, 39, 33.
       

    102. [102]

      Li, J.; Wang, H.; Liu, L.; Sun, J. RSC Adv. 2014, 4, 49974.  doi: 10.1039/C4RA09190F

    103. [103]

      Yadav, A. K.; Srivastava, V. P.; Yadav, L. D. S. RSC Adv. 2014, 4, 4181.  doi: 10.1039/C3RA46553E

    104. [104]

      Liu, X.; Cong, T.; Liu, P.; Sun, P. J. Org. Chem. 2016, 81, 7256.  doi: 10.1021/acs.joc.6b00097

    105. [105]

      Devari, S.; Rizvi, M. A.; Shah, B. A. Tetrahedron Lett. 2016, 57, 3294.  doi: 10.1016/j.tetlet.2016.06.046

    106. [106]

      Cheng, X.; Yang, B.; Hu, X.; Xu, Q.; Lu, Z. Chemistry 2016, 22, 17566.  doi: 10.1002/chem.v22.49

    107. [107]

      Jin, Y.; Ou, L.; Yang, H.; Fu, H. J Am. Chem. Soc. 2017, 139, 14237.  doi: 10.1021/jacs.7b07883

    108. [108]

      Yue, H.; Nan, G. Synlett 2018, 29, 1340.  doi: 10.1055/s-0037-1609443

    109. [109]

      Sahoo, M. K.; Jaiswal, G.; Rana. J.; Balaraman, E. Chemistry 2017, 23, 14167.  doi: 10.1002/chem.201703642

    110. [110]

      Kee, C. W.; Chan, K. M.; Wong, M. W.; Tan, C. H. Asian J. Org. Chem. 2014, 3, 536.  doi: 10.1002/ajoc.v3.4

    111. [111]

      Yang, X. J.; Chen, B.; Zheng, L. Q.; Wu, L. Z.; Tung, C. H. Green Chem. 2014, 16, 1082.  doi: 10.1039/C3GC42042F

    112. [112]

      Yang, D. T.; Meng, Q. Y.; Zhong, J. J.; Xiang, M.; Liu, Q.; Wu, L. Z. Eur. J.Org. Chem. 2013, 2013, 7528.  doi: 10.1002/ejoc.201301105

    113. [113]

      Liu, Z.; Zhang, Y.; Cai, Z.; Sun, H.; Cheng, X. Adv. Synth. Catal. 2015, 357, 589.  doi: 10.1002/adsc.201400936

    114. [114]

      Majek, M.; Filace, F.; Wangelin, A. J. Chemistry 2015, 21, 4518.  doi: 10.1002/chem.201406461

    115. [115]

      Yi, H.; Niu, L. B.; Wang, S. C.; Liu, T. Y.; Singh, A. K.; Lei, A. W. Org. Lett. 2016, 19, 122.
       

    116. [116]

      Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. ACS Macro Lett. 2017, 6, 452.  doi: 10.1021/acsmacrolett.7b00140

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    15. [15]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(30)
  • Abstract views(1755)
  • HTML views(374)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return