Citation: Zhao Kang, Yang Lei, Liu Jianhua, Xia Chungu. Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp3)—H Bond Activation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 2833-2857. doi: 10.6023/cjoc201805028 shu

Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp3)—H Bond Activation

  • Corresponding author: Yang Lei, lyang@licp.cas.cn Liu Jianhua, jhliu@licp.cas.cn
  • Received Date: 13 May 2018
    Revised Date: 26 June 2018
    Available Online: 24 November 2018

    Fund Project: the National Natural Science Foundation of China 21372231Project supported by the National Natural Science Foundation of China (Nos. 21372231, 21673260)the National Natural Science Foundation of China 21673260

Figures(48)

  • Heterocyclic compounds are not only important intermediates in organic synthesis and medicine synthesis, but also the basic building framework of biologically active natural products. In recent years, Pd-catalyzed C(sp3)—H bonds activation has been demonstrated as one of the hot topics in the field of heterocyclic compound synthesis because of its high atomic economic characteristics. Herein, the recent research progress in the construction of heterocyclic compounds via Pd-catalyzed C(sp3)—H bond activation is summarized according to the classification of the ring number of heterocyclic compounds (mainly including N, O heterocycles). The reaction selectivity, substrate compatibility, reaction mechanism, advantages and disadvantages as well as an outlook in this field are also discussed.
  • 加载中
    1. [1]

    2. [2]

      (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
      (b) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.

    3. [3]

      Murahashi, S. J. Am. Chem. Soc. 1955, 77, 6403.
       

    4. [4]

      (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
      (b) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084.

    5. [5]

    6. [6]

      (a) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.
      (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.

    7. [7]

      (a) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140.
      (b) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.

    8. [8]

      He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754  doi: 10.1021/acs.chemrev.6b00622

    9. [9]

      Baudoin, O. Acc. Chem. Res. 2017, 50, 1114.  doi: 10.1021/acs.accounts.7b00099

    10. [10]

    11. [11]

      McNally, A.; Haffemayer, B.; Collins, B. S.; Gaunt, M. J. Nature 2014, 510, 129.  doi: 10.1038/nature13389

    12. [12]

      Smalley, A. P.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 10632.  doi: 10.1021/jacs.5b05529

    13. [13]

      Zakrzewski, J.; Smalley, A. P.; Kabeshov, M. A.; Gaunt, M. J.; Lapkin, A. A. Angew. Chem., Int. Ed. 2016, 55, 8878.  doi: 10.1002/anie.201602483

    14. [14]

      Smalley, A. P.; Cuthbertson, J. D.; Gaunt, M. J. J. Am. Chem. Soc. 2017, 139, 1412.  doi: 10.1021/jacs.6b12234

    15. [15]

      He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.  doi: 10.1021/ja210660g

    16. [16]

      Ye, X.; He, Z.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci. 2013, 4, 3712.  doi: 10.1039/c3sc51211h

    17. [17]

      (a) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
      (b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res. 2004, 37, 592.

    18. [18]

      Zhang, Q.; Chen, K.; Rao, W.-H.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Angew. Chem., Int. Ed. 2013, 52, 13588.  doi: 10.1002/anie.201306625

    19. [19]

      Ling, P.-X.; Fang, S.-L.; Yin, X.-S.; Zhang, Q.; Chen, K.; Shi, B.-F. Chem. Commun. 2017, 53, 6351.  doi: 10.1039/C7CC02426F

    20. [20]

      Ting, C. P.; Maimone, T. J. Angew. Chem., Int. Ed. 2014, 126, 3179.  doi: 10.1002/ange.201311112

    21. [21]

      Baudoin, O.; Herrbach, A.; Guéritte, F. Angew. Chem., Int. Ed. 2003, 115, 5914.  doi: 10.1002/(ISSN)1521-3757

    22. [22]

      Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 12842.  doi: 10.1002/anie.201207959

    23. [23]

      Lafrance, M.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 14570.  doi: 10.1021/ja076588s

    24. [24]

      Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.  doi: 10.1002/anie.v50.32

    25. [25]

      Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9064.  doi: 10.1002/anie.201405508

    26. [26]

      Dailler, D.; Rocaboy, R.; Baudoin, O. Angew. Chem., Int. Ed. 2017, 56, 7218.  doi: 10.1002/anie.201703109

    27. [27]

      Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480.  doi: 10.1021/ol403364k

    28. [28]

      Zhao, J.; Zhao, X.-J.; Cao, P.; Liu, J.-K.; Wu, B. Org. Lett. 2017, 19, 4880.  doi: 10.1021/acs.orglett.7b02339

    29. [29]

      Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, M. G.; Gaunt, M. J. Science 2016, 354, 851.  doi: 10.1126/science.aaf9621

    30. [30]

      Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 129, 12120.  doi: 10.1002/ange.201706303

    31. [31]

      Hogg, K. F.; Trowbridge, A.; Álvarez−Pérez, A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8198.  doi: 10.1039/C7SC03876C

    32. [32]

      Zhao, R.; Lu, W. Org. Lett. 2017, 19, 1768.  doi: 10.1021/acs.orglett.7b00536

    33. [33]

      Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.  doi: 10.1021/ja210959p

    34. [34]

      Wang, C.; Chen, C.; Zhang, J.; Han, J.; Wang, Q.; Guo, K.; Liu, P.; Guan, M.; Yao, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 9884.  doi: 10.1002/anie.201404854

    35. [35]

      Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055.  doi: 10.1021/jacs.5b13462

    36. [36]

      He, C.; Gaunt, M. J. Chem. Sci. 2017, 8, 3586.  doi: 10.1039/C7SC00468K

    37. [37]

      (a) Meijere, A. D.; Zezschwitz, P. V.; Bräse, S. Acc. Chem. Res. 2005, 38, 413.
      (b) Ikeda, S. I. Acc. Chem. Res. 2000, 33, 511.

    38. [38]

      Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3462.

    39. [39]

      Ren, H.; Li, Z.; Knochel, P. Chem. Asian J. 2007, 2, 416.  doi: 10.1002/(ISSN)1861-471X

    40. [40]

      Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 1759.  doi: 10.1021/ol800425z

    41. [41]

      (a) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
      (b) Liang, C.; Collet, F.; Robert-Peillard, F.; Müller, P.; Dodd, R. H.; Dauban, P. J. Am. Chem. Soc. 2008, 130, 343.

    42. [42]

      Neumann, J. J.; Rakshit, S.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892.  doi: 10.1002/anie.v48:37

    43. [43]

      Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.  doi: 10.1021/cr068372z

    44. [44]

      Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.  doi: 10.1021/ja00001a054

    45. [45]

      Katayev, D.; Nakanishi, M.; Bürgi, T.; Kündig, E. P. Chem. Sci. 2012, 3, 1422.  doi: 10.1039/c2sc20111a

    46. [46]

      Larionov, E.; Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Chem. Sci. 2013, 4, 1995.  doi: 10.1039/c3sc00098b

    47. [47]

      Katayev, D.; Larionov, E.; Nakanishi, M.; Besnard, C.; Kündig, E. P. Chem.-Eur. J. 2014, 20, 15021.  doi: 10.1002/chem.201403985

    48. [48]

      Anas, S.; Cordi, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483.  doi: 10.1039/c1cc14292e

    49. [49]

      Guyonnet, M.; Baudoin, O. Org. Lett. 2012, 14, 398.  doi: 10.1021/ol2031763

    50. [50]

      Saget, T.; Lemouzy, S. J.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 2238.  doi: 10.1002/anie.201108511

    51. [51]

      Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.  doi: 10.1021/ol302035j

    52. [52]

      (a) Nelson, A. C.; Kalinowski, E. S.; Jacobson, T. L.; Grundt, P. Tetrahedron Lett. 2013, 54, 6804.
      (b) Argade, S. D.; Argrade, N. P. Org. Lett. 2013, 15, 4006.
      (c) Wang, C.; Zhang, L.; Ren, A.; Lu, P.; Wang, Y. Org. Lett. 2013, 15, 2982.

    53. [53]

      Tsukano, C.; Okuno, M.; Nishiguchi, H.; Takemoto, Y. Adv. Synth. Catal. 2014, 356, 1533.  doi: 10.1002/adsc.v356.7

    54. [54]

      (a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947.
      (b) Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem.-Eur. J. 2015, 21, 8355.

    55. [55]

      Pedroni, J.; Cramer, N. Org. Lett. 2016, 18, 1932.  doi: 10.1021/acs.orglett.6b00795

    56. [56]

      Leal, R. A.; Bischof, C.; Lee, Y. V.; Sawano, S.; McAtee, C. C.; Latimer, L. N.; Russ, Z. N.; Dueber, J. E.; Yu, J.-Q.; Sarpong, R. Angew. Chem., Int. Ed. 2016, 55, 11824.  doi: 10.1002/anie.201605475

    57. [57]

      Zhang, S.; Lu, J.; Ye, J.; Duan, W.-L. Chin. J. Org. Chem. 2016, 36, 752(in Chinese).
       

    58. [58]

      Yang, L.; Melot, R.; Neuburger, M.; Baudoin, O. Chem. Sci. 2017, 8, 1344.  doi: 10.1039/C6SC04006C

    59. [59]

      Salcedo, A.; Neuville. L.; Zhu, J. J. Org. Chem. 2008, 73, 3600.  doi: 10.1021/jo800266y

    60. [60]

      Liégault, B.; Fangou, K. Organometallics 2008, 27, 4841.  doi: 10.1021/om800780f

    61. [61]

      Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 10692.  doi: 10.1021/ja103081n

    62. [62]

      Yoo, E. J.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378.  doi: 10.1021/ja108754f

    63. [63]

      Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.  doi: 10.1021/ja1010866

    64. [64]

      Tsukano, C.; Okuno, M.; Takemoto, Y. Angew. Chem., Int. Ed. 2012, 51, 2763.  doi: 10.1002/anie.201108889

    65. [65]

      Zhang, Q.; Yu, H.-Z.; Fu, Y. Organometallics 2013, 32, 4165.  doi: 10.1021/om400370v

    66. [66]

      He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem., Int. Ed. 2013, 52, 11124.  doi: 10.1002/anie.201305615

    67. [67]

      Zhang, M. J. Chem. Res. 2013, 37, 606.  doi: 10.3184/174751913X13801883437178

    68. [68]

      (a) Nair, J. J.; Aremu, A. O.; Van Staden, J. J. Ethnopharmacol. 2011, 137, 1102.
      (b) Evdokimov, N. M.; Lamoral-Theys, D.; Mathieu, V.; Andolfi, A.; Frolova, L. V.; Pelly, S. C.; Van Otterlo, W. A.; Magedov, I. V.; Kiss, R.; Evidente, A.; Kornienko, A. Bioorg. Med. Chem. 2011, 19, 7252.
      (c) Evidente, A.; Kornienko, A. Phytochem. Rev. 2009, 8, 449.

    69. [69]

      (a) De, S.; Mishra, S.; Kakde, B. N.; Dey, D.; Bisai, A. J. Org. Chem. 2013, 78, 7823.
      (b) De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466.

    70. [70]

      Tsukano, C.; Muto, N.; Enkhtaivan, I.; Takemoto, Y. Chem. Asian J. 2014, 9, 2628.  doi: 10.1002/asia.201402490

    71. [71]

      Holstein, P. M.; Dailler, D.; Vantourout, J.; Shaya, J.; Millet, A.; Baudoin, O. Angew. Chem., Int. Ed. 2015, 55, 2805.
       

    72. [72]

      Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. Nat. Chem. 2015, 7, 1009.  doi: 10.1038/nchem.2367

    73. [73]

      Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.; Zhao, Y. Chem. Sci. 2015, 6, 4610.  doi: 10.1039/C5SC00519A

    74. [74]

      Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X.-S. Org. Lett. 2015, 17, 3698.  doi: 10.1021/acs.orglett.5b01658

    75. [75]

      Hernando, E.; Villalva, J.; Martínez, Á. M.; Alonso, I.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J. C. ACS Catal. 2016, 6, 6868.  doi: 10.1021/acscatal.6b01987

    76. [76]

      Parella, R.; Babu, S. A. J. Org. Chem. 2017, 82, 7123.  doi: 10.1021/acs.joc.7b00582

    77. [77]

      Tsukano, C.; Okuno, M.; Takemoto, Y. Chem. Lett. 2013, 42, 753.  doi: 10.1246/cl.130228

    78. [78]

      Ladd, C. L.; Roman, D. S.; Charette, A. B. Org. Lett. 2013, 15, 1350.  doi: 10.1021/ol4003338

    79. [79]

      Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 11826.  doi: 10.1002/anie.201505916

    80. [80]

      Saget, T.; Perez, D.; Cramer, N. Org. Lett. 2013, 15, 1354.  doi: 10.1021/ol400380y

    81. [81]

      Zhang, M.; Jovic, F.; Vickers, T.; Dyck, B.; Tamiya, J.; Grey, J.; Tran, J. A.; Fleck, B. A.; Pick, R.; Foster, A. C.; Chen, C. Bioorg. Med. Chem. Lett. 2008, 18, 3682.  doi: 10.1016/j.bmcl.2008.05.077

    82. [82]

      Krow, G. R.; Cannon, K. C. Org. Prep. Proced. Int. 2000, 32, 103.  doi: 10.1080/00304940009356278

    83. [83]

      Micheli, F.; Cavanni, P.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Checchia, A.; Davalli, S.; Di Fabio, R.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Minick, D.; Negri, M.; Oliosi, B.; Read, K. D.; Sartori, I.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L. J. Med. Chem. 2010, 53, 2534.  doi: 10.1021/jm901818u

    84. [84]

      Pedroni, J.; Cramer, N. J. Am. Chem. Soc. 2017, 139, 12398.  doi: 10.1021/jacs.7b07024

    85. [85]

      Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.  doi: 10.1021/ja071905g

    86. [86]

      (a) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 7496.
      (b) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.

    87. [87]

      Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.  doi: 10.1021/ja8027394

    88. [88]

      Fu, R.; Zhao, B.; Shi, Y. J. Org. Chem. 2009, 74, 7577.  doi: 10.1021/jo9015584

    89. [89]

      Stowers, K. J.; Fortner, K. C.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 6541.  doi: 10.1021/ja2015586

    90. [90]

      Sofack-Kreutzer, J.; Martin, N.; Renaudat, A.; Jazzar, R.; Baudoin, O. Angew. Chem., Int. Ed. 2012, 51, 10399.  doi: 10.1002/anie.201205403

    91. [91]

      (a) Dailler, D.; Danoun, G.; Baudoin, O. Angew. Chem., Int. Ed. 2015, 54, 4919.
      (b) Dailler, D.; Danoun, G.; Ourri, B.; Baudoin, O. Chem. Eur. J. 2015, 21, 9370.

    92. [92]

      Miki, Y.; Umemoto, H.; Dohshita, M.; Hamamoto, H. Tetrahedron Lett. 2012, 53, 1924.  doi: 10.1016/j.tetlet.2012.01.132

    93. [93]

      Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C. E.; Clot, E.; Fagnou, K.; Baudoin, O. J. Am. Chem. Soc. 2010, 132, 10706.  doi: 10.1021/ja1048847

    94. [94]

      Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032.  doi: 10.1021/ja405394v

    95. [95]

      Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176.  doi: 10.1021/ja506036q

    96. [96]

      (a) Meyers, A. I. Acc. Chem. Res. 1978, 11, 375.
      (b) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
      (c) Gomez, M.; Muller, G.; Rocamora, M. Coord. Chem. Rev. 1999, 193, 769.
      (d) Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
      (e) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112.

    97. [97]

      Frump, J. A. Chem. Rev. 1971, 71, 483.  doi: 10.1021/cr60273a003

    98. [98]

      Li, B.; Wang, S.-Q.; Liu, B.; Shi, B.-F. Org. Lett. 2015, 17, 1200.  doi: 10.1021/acs.orglett.5b00151

    99. [99]

      (a) Mitsunobu, O. In Comprehensive Organic Synthesis, Eds.: Fleming, I.; Trost, B. M., Pergamon, Oxford, 1991, p. 1.
      (b) Smith, M. B.; March, J. Advanced Organic Chemistry, Wiley Interscience, New York, 2001, p. 479.

    100. [100]

      Thompson, S. J.; Thach, D. Q.; Dong, G. J. Am. Chem. Soc. 2015, 137, 11586.  doi: 10.1021/jacs.5b07384

    101. [101]

      Lee, J. M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375.  doi: 10.1016/j.tetlet.2005.12.104

    102. [102]

      Novák, P.; Correa, A.; Gallardo−Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.  doi: 10.1002/anie.v50.51

    103. [103]

      Eom, D.; Jeong, Y.; Kim, Y. R.; Lee, E.; Choi, W.; Lee, P. H. Org. Lett. 2013, 15, 5210.  doi: 10.1021/ol402736v

    104. [104]

      Shi, B.-F.; Liu, B. Synlett 2016, 27, 2396.  doi: 10.1055/s-0035-1562508

    105. [105]

      Wang, H.; Niu, Y.; Zhang, G.; Ye, X.-S. Tetrahedron Lett. 2016, 57, 4544.  doi: 10.1016/j.tetlet.2016.08.086

    106. [106]

      McCallum, M. E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. 2016, 138, 2437.  doi: 10.1021/jacs.5b13586

    107. [107]

      Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.  doi: 10.1021/ja027311p

    108. [108]

      Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707.  doi: 10.1021/ja9054959

    109. [109]

      Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem. Eur. J. 2009, 15, 11078.  doi: 10.1002/(ISSN)1521-3765

    110. [110]

      Qi, X. B.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C. Tetrahedron. 2010, 66, 4816.  doi: 10.1016/j.tet.2010.04.064

    111. [111]

      Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.  doi: 10.1021/ja054549f

    112. [112]

      Feng, Y.; Wang, Y.; Landgraf, B.; Liu, S.; Chen, G. Org. Lett. 2010, 12, 3414.  doi: 10.1021/ol101220x

    113. [113]

      Yan, J.-X.; Li, H.; Liu, X.-W.; Shi, J.-L.; Wang, X.; Shi, Z.-J. Angew. Chem., Int. Ed. 2014, 53, 4945.  doi: 10.1002/anie.201402562

    114. [114]

      Deng, Y.; Gong, W.; He, J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 6692.  doi: 10.1002/anie.201403878

    115. [115]

      Liu, W.; Yu, Q.; Hu, L.; Chen, Z.; Huang, J. Chem. Sci. 2015, 6, 5768.  doi: 10.1039/C5SC01482D

    116. [116]

      Guan, M.; Pang, Y.; Zhang, J.; Zhao, Y. Chem. Commun. 2016, 52, 7043.  doi: 10.1039/C6CC02865A

    117. [117]

      Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 3906.  doi: 10.1039/c3sc51747k

    118. [118]

      Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172.  doi: 10.1002/anie.201611118

    119. [119]

      Yoshioka, S.; Nagatomo, M.; Inoue, M. Org. Lett. 2015, 17, 90.  doi: 10.1021/ol503291s

    120. [120]

      Boultadakis-Arapinis, M.; Lemoine, P.; Turcaud, S.; Micouin, L.; Lecourt, T. J. Am. Chem. Soc. 2010, 132, 15477.  doi: 10.1021/ja1054065

    121. [121]

      Probst, N.; Grelier, G.; Ghermani, N.; Gandon, V.; Alami, M.; Messaoudi, S. Org. Lett. 2017, 19, 5038.  doi: 10.1021/acs.orglett.7b02170

    122. [122]

      Wang, P.-S.; Shen, M.-L.; Wang, T.-C.; Lin, H.-C.; Gong, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 16032.  doi: 10.1002/anie.201709681

    123. [123]

      Rousseaux, S.; Liégault, B.; Fagnou, K. Chem. Sci. 2012, 3, 244.  doi: 10.1039/C1SC00458A

    124. [124]

      Pedroni, J.; Saget, T.; Donets, P. A.; Cramer, N. Chem. Sci. 2015, 6, 5164.  doi: 10.1039/C5SC01909E

    125. [125]

      Ladd, C. L.; Belouin, A. V.; Charette, A. B. J. Org. Chem. 2016, 81, 256.  doi: 10.1021/acs.joc.5b01916

    126. [126]

      Ladd, C. L.; Charette, A. B. Org. Lett. 2016, 18, 6046.  doi: 10.1021/acs.orglett.6b02982

    127. [127]

      Dyker, G. Angew. Chem., Int. Ed. 1992, 31, 1023.
       

    128. [128]

      (a) Dyker, G. J. Org. Chem. 1993, 58, 6426.
      (b) Dyker, G. Chem. Ber. 1994, 127, 739.

    129. [129]

      Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584.  doi: 10.1021/ja206013j

    130. [130]

      Ammann, S. E.; Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2014, 136, 10834.  doi: 10.1021/ja503322e

    131. [131]

      Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 12732.  doi: 10.1021/jacs.5b08477

    132. [132]

      Ammann, S. E.; Liu, W.; White, M. C. Angew. Chem., Int. Ed. 2016, 55, 9571.  doi: 10.1002/anie.201603576

    133. [133]

      Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032.  doi: 10.1021/ja063096r

    134. [134]

      Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.  doi: 10.1021/ol900941t

    135. [135]

      Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547.  doi: 10.1038/nchem.351

    136. [136]

      Stang, E. M.; White, M. C. Angew. Chem., Int. Ed. 2011, 50, 2094.  doi: 10.1002/anie.v50.9

    137. [137]

      Ladd, C. L.; Roman, D. S.; Charette, A. B. Tetrahedron 2013, 69, 4479.  doi: 10.1016/j.tet.2013.02.080

  • 加载中
    1. [1]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    6. [6]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    11. [11]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(47)
  • Abstract views(1943)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return