Citation: Chen Wei, Guo Renyu, Gong Jianxian, Yang Zhen. Diastereoselective Construction of All-Carbon Quaternary Stereocenters via Intramolecular Oxidative Cross-Coupling Reaction[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 238-248. doi: 10.6023/cjoc201805023 shu

Diastereoselective Construction of All-Carbon Quaternary Stereocenters via Intramolecular Oxidative Cross-Coupling Reaction

  • Corresponding author: Gong Jianxian, zyang@pku.edu.cn Yang Zhen, gongjx@pku.edu.cn
  • Received Date: 10 May 2018
    Revised Date: 13 September 2018
    Available Online: 26 January 2018

    Fund Project: the Natural Science Foundation of Guangdong Province 2016A030306011the National Natural Science Foundation of China 21632002Project supported by the National Natural Science Foundation of China (Nos. 21772008, 21632002), the Shenzhen Science and Technology Project Program (No. GRCK2017042414425972), the Natural Science Foundation of Guangdong Province (No. 2016A030306011) and the Qingdao National Laboratory for Marine Science and Technology (No. LMDBKF201703)the National Natural Science Foundation of China 21772008the Shenzhen Science and Technology Project Program GRCK2017042414425972the Qingdao National Laboratory for Marine Science and Technology LMDBKF201703

Figures(7)

  • The formation of sterically hindered C—C bond represents a great challenge in modern synthetic organic chemistry. A particularly challenging issue is the construction of all-carbon quaternary stereocenters. Herein, a ceric ammonium nitrate (CAN)-mediated intramolecular oxidative cross-coupling of silyl ethers for direct construction of valuable polycyclic scaffolds is described. The reaction enables sterically congested vicinal all-carbon quaternary and tertiary stereocenters to be installed diastereoselectively. The developed method provides a concise and efficient approach for ligation of two different segments through a compact C—C bond formation, which has potential applications in the synthesis of complex molecules as well as sterically congested natural products.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Csákӱ, A. G.; Plumet, J. Chem. Soc. Rev. 2001, 30, 313.
      (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (c) Guo, F. H.; Clift, M. D.; Thomson, R. J. Eur. J. Org. Chem. 2012, 4881.
      (d) Murarka, S.; Antonchick, A. P. Synthesis 2018, 50, 2150.

    2. [2]

      Ivanoff, D.; Spassoff, A. Bull. Soc. Chim. Fr. 1935, 2, 76.
       

    3. [3]

      For selected oxidative coupling examples, see: (a) Rathke, M. W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 4605.
      (b) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 649.
      (c) Ito, Y.; Konoike, T.; Harada, T.; Saegusa, T. J. Am. Chem. Soc. 1977, 99, 1487.
      (d) Frazier, Jr. R.; Harlow, R. J. Org. Chem. 1980, 45, 5408.
      (e) Moeller, K. D.; Tinao, L. V. J. Am. Chem. Soc. 1992, 114, 1033.
      (f) Mazzega, M.; Fabris, F.; Cossu, S.; Lucchi, O. D.; Lucchini, V.; Valle, G. Tetrahedron 1999, 55, 4427.
      (g) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004.
      (h) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546.
      (i) Casey, B. M.; Flowers, R. A. J. Am. Chem. Soc. 2011, 133, 11492.
      (j) Amaya, T.; Maegawa, Y.; Masuda, T.; Osafune, Y.; Hirao. T. J. Am. Chem. Soc. 2015, 137, 10072.
      (k) Kaiser, D.; Teskey, C. J.; Alder, P.; Maulide. N. J. Am. Chem. Soc. 2017, 139, 16040.
      (l) Næ sborg, L.; Corti, V.; Leth, L. A.; Poulsen, P. H.; Jø rgensen. A. Angew. Chem., Int. Ed. 2018, 57, 1606.
      (m) Tanaka, T.; Tanaka, T.; Tsuji, T.; Yazaki, R.; Ohshima, T. Org. Lett. 2018, 20, 3541.

    4. [4]

      For selected applications of oxidative coupling reaction in natural product synthesis, see: (a) Baran, P. S.; Guerrero, C. A.; Ambhaikar, N. B.; Hafensteiner, B. D. Angew. Chem., Int. Ed. 2005, 44, 606.
      (b) Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D. J. Am. Chem. Soc. 2006, 128, 8678.
      (c) Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 7568.
      (d) Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260.
      (e) Konkol, L. C.; Guo, F. H.; Sarjeant, A. A.; Thomson, R. J. Angew. Chem., Int. Ed. 2011, 50, 9931.
      (f) Jones, B. T.; Avetta, C. T.; Thomson, R. J. Chem. Sci. 2014, 5, 1794.
      (g) You, L.; Liang, X.-T.; Xu, L.-M.; Wang, Y.-F.; Zhang, J.-J.; Su, Q.; Li, Y.-H.; Zhang, B.; Yang, S.-L.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2015, 137, 10120.
      (h) Robison, E. E.; Thomson, R. J. J. Am. Chem. Soc. 2018, 140, 1956.

    5. [5]

      Wender, P. A.; Miller, B. L. In Organic Synthesis: Theory and Applications, Vol. 2, Ed.: Hudlicky, T., JAI Press, Greenwich, CT, 1993

    6. [6]

      (a) Tokuda, M.; Shigei, T.; Itoh, M. Chem. Lett. 1975, 621.
      (b) Baciocchi, E.; Casu, A.; Ruzziconi, R. Tetrahedron Lett. 1989, 30, 3707.

    7. [7]

      (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.
      (b) Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2012, 48, 5355.

    8. [8]

      (a) Schmittel, M.; Burghart, A.; Malisch, W.; Reising, J.; Sӧllner, R. J. Org. Chem. 1998, 63, 396.
      (b) Schmittel, M.; Haeuseler, A. J. Organomet. Chem. 2002, 661, 169.

    9. [9]

      (a) Avetta, C. T.; Konkol, L. C.; Taylor, C. N.; Dugan, K. C.; Stern, C. L.; Thomson, R. J. Org. Lett. 2008, 10, 5621.
      (b) Konkol, L. C.; Jones, B. T.; Thomson, R. J. Org. Lett. 2009, 11, 5550.

    10. [10]

      (a) Fuji, K. Chem. Rev. 1993, 93, 2037.
      (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
      (c) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591.
      (d) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5363.
      (e) Christoffers, J.; Baro, A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, Wiley-VCH, Weinheim, 2005.
      (f) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
      (g) Hawner. C.; Alexakis, A. Chem. Commun. 2010, 46, 7295.
      (h) Shimizu, M. Angew. Chem., Int. Ed. 2011, 50, 5998.
      (i) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, 2745.
      (j) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
      (k) Long, R.; Huang, J.; Gong, J. X.; Yang, Z. Nat. Prod. Rep. 2015, 32, 1584.

    11. [11]

      (a) Arya, P.; Joseph, R.; Chou, D. T. H. Chem. Biol. 2002, 9, 145.
      (b) Juncosa Jr, J. I.; Hansen, M.; Bonner, L. A.; Cueva, J. P.; Maglathlin, R.; McCorvy, J. D.; Marona-Lewicka, D.; Lill, M. A.; Nichols, D. E. ACS Chem. Neurosci. 2013, 4, 96.

    12. [12]

      (a) Narayanan, C. R.; Pachapurkar, R. V. Tetrahedron Lett. 1965, 48, 4333.
      (b) Ziffer, H.; Weiss, U.; Narayanan, C. R.; Pachapurkar, R. V. J. Org. Chem. 1966, 31, 2691.
      (c) Harris, M.; Henderson, R.; McCrindle, R.; Overton, K. H.; Turner, D. W. Tetrahedron 1968, 24, 1517.

    13. [13]

      Fontana, A.; Muniain, C.; Cimino, G. J. Nat. Prod. 1998, 61, 1027.  doi: 10.1021/np980073k

    14. [14]

      Gonzalez, M. Curr. Bioact. Compd. 2007, 3, 1.  doi: 10.2174/157340707780126534

    15. [15]

      (a) Zhang, P. P.; Yan, Z. M.; Li, Y. H.; Gong, G. X.; Yang, Z. J. Am. Chem. Soc. 2017, 139, 13989.
      (b) Huang, J.; Gu, Y. Q.; Guo, K.; Zhu, L.; Lan, Y.; Gong, G. X.; Yang, Z. Angew. Chem., Int. Ed. 2017, 56, 7890.
      (c) Liu, D.-D.; Sun, T.-W.; Wang, K.-Y.; Lu, Y.; Zhang, S.-L.; Li, Y.-H.; Jiang, Y.-L.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2017, 139, 5732.
      (d) Huang, Z. H.; Huang, J.; Qu, Y. Z.; Zhang, W. B.; Gong, J. X.; Yang, Z. Angew. Chem., Int. Ed. 2018, 57, 8744.

    16. [16]

      Paquette, L. A.; Bzowej, E. I.; Branan, B. M.; Stanton, K. J. J. Org. Chem. 1995, 60, 7277.  doi: 10.1021/jo00127a037

    17. [17]

      (a) Dessau, R. M.; Heiba, E. I. J. Org. Chem. 1974, 39, 3457.
      (b) Liu, X. G.; Chen, X. H.; Mohr, J. T. Org. Lett. 2016, 18, 3182.

    18. [18]

      Kobayashi, Y.; Taguchi, T.; Tokuno, E. Tetrahedron Lett. 1977, 3741.
       

    19. [19]

      CDCC 1501822(15), CDCC 1582641(30) and CDCC 1861685(32) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, U. K.; fax: +44-1223336033.

    20. [20]

      (a) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in Chemistry, Biology and Materials, Vols. 1~4, Wiley, Chichester, 2012.
      (b) Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. Chem. Rev. 2014, 114, 5848.
      (c) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
      (d) Zard, S. Z. Org. Lett. 2017, 19, 1257.

    21. [21]

      Frazier, Jr. R.; Harlow, R. J. Org. Chem. 1980, 45, 5408.  doi: 10.1021/jo01314a052

    22. [22]

      (a) Schmittel, M.; Sӧllner, R. Chem. Ber./Rec. 1997, 130, 771.
      (b) Schmittel, M.; Burghart, A.; Werner, H.; Laubender, M.; Sӧllner, R. J. Org. Chem. 1999, 104, 3077.

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    6. [6]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    13. [13]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

Metrics
  • PDF Downloads(26)
  • Abstract views(1953)
  • HTML views(395)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return