Citation: Xu Xinbin, Cheng Ruofei, Qiu Zaozao, Pan Chengling. Palladium-Catalyzed Cross-Coupling Reactions of Borylated o-Carborane: Synthesis of 3, 6-Diaryl-o-carboranes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 3078-3085. doi: 10.6023/cjoc201805018 shu

Palladium-Catalyzed Cross-Coupling Reactions of Borylated o-Carborane: Synthesis of 3, 6-Diaryl-o-carboranes

  • Corresponding author: Qiu Zaozao, qiuzz@sioc.ac.cn Pan Chengling, clpan@aust.edu.cn
  • Received Date: 7 May 2018
    Revised Date: 20 June 2018
    Available Online: 5 November 2018

    Fund Project: Project supported by the the National Natural Science Foundation of China (No. 21772223) and the CAS-Croucher Funding Schemethe the National Natural Science Foundation of China 21772223

Figures(3)

  • Palladium catalyzed cross-coupling of 3, 6-(Bpin)2-o-carborane (Bpin=pinacolatoboryl) with aryl bromides has been achieved, leading to the formation of a series of B(3, 6)-diarylated-o-carborane derivatives in moderate yields. In this reaction, PdCl2(cod)/tricyclohexylphosphine was used as catalyst to avoid the formation of palladium-catalyzed aryl-aryl exchange and direct B-H arylation by-products. A possible mechanism is proposed, involving a tandem sequence of oxidative addition, anion exchange, transmetalation, and reductive elimination.
  • 加载中
    1. [1]

      (a) Hawthorne, M. F. Angew. Chem., Int. Ed. 1993, 32, 950.
      (b) Armstrong, A. F.; Valliant, J. F. Dalton Trans. 2007, 4240.
      (c) Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701.
      (d) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
      (e) Leśnikowski, Z. J. J. Med. Chem. 2016, 59, 7738.

    2. [2]

      (a) Xie, Z. Coord. Chem. Rev. 2002, 231, 23.
      (b) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry Ⅲ, Eds.: Mingos, D. M. P.; Crabtree, R. H., Elsevier, Oxford, 2007, Vol. 3.
      (c) Lee, J.-D.; Co, T. T.; Kim, T.-J.; Kang, S. O. Synlett 2009, 771.
      (d) Himmelspach, A.; Finze, M.; Raub, S. Angew. Chem., Int. Ed. 2011, 50, 2628.
      (e) Spokoyny, A. M.; Machan, C. W.; Clingerman, D. J.; Rosen, M. S.; Wiester, M. J.; Kennedy, R. D.; Stern, C. L.; Sarjeant, A. A.; Mirkin, C. A. Nat. Chem. 2011, 3, 590.
      (f) El-Hellani, A.; Lavallo, V. Angew. Chem., Int. Ed. 2014, 53, 4489.
      (g) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 14654.
      (h) Adams, R. D.; Kiprotich, J.; Peryshkov, D. V.; Wong, Y. O. Chem. Eur. J. 2016, 22, 6501.
      (i) Axtell, J. C.; Kirlikovali, K. O.; Djurovich, P. I.; Jung, D.; Nguyen, V. T.; Munekiyo, B.; Royappa, A. T.; Rheingold, A. L.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 15758.
      (j) Hailmann, M.; Wolf, N.; Renner, R.; Schä fer, T. C.; Hupp, B.; Steffen, A.; Finze, M. Angew. Chem., Int. Ed. 2016, 55, 10507.
      (k) Zhou, Y.-P.; Raoufmoghaddam, S.; Szilvási, T.; Driess, M. Angew. Chem., Int. Ed. 2016, 55, 12868.

    3. [3]

      (a) Tsuboya, N.; Lamrani, M.; Hamasaki, R.; Ito, M.; Mitsuishi, M.; Miyashita, T.; Yamamoto, Y. J. Mater. Chem. 2002, 12, 2701.
      (b) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.
      (c) Li, X.; Yan, H.; Zhao, Q. Chem. Eur. J. 2016, 22, 1888.
      (d) Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
      (e) Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.

    4. [4]

      (a) Yang, X.; Jiang, W.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992, 114, 9719.
      (b) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
      (c) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
      (d) Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nano Res. 2008, 1, 412.
      (e) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
      (f) Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. Angew. Chem., Int. Ed. 2011, 50, 5298.
      (g) Cioran, A. M.; Musteti, A. D.; Teixidor, F.; Krpetić, Ž.; Prior, I. A.; He, Q.; Kiely, C. J.; Brust, M.; Viñ as, C. J. Am. Chem. Soc. 2012, 134, 212.
      (h) Grimes, R. N. Dalton Trans. 2015, 44, 5939.
      (i) Schwartz, J. J.; Mendoza, A. M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V. T.; Spokoyny, A. M.; Mirkin, C. A.; Baše, T.; Weiss, P. S. J. Am. Chem. Soc. 2016, 138, 5957.
      (j) Qian, E. A.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Jung, D.; Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina, M. S.; Wang, J. Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.; Král, P.; Spokoyny, A. M. Nat. Chem. 2017, 9, 333.

    5. [5]

      (a) Kokado, K.; Chujo, Y. J. Org. Chem. 2011, 76, 316.
      (b) Ferrer-Ugalde, A.; Juárez-Pérez, E. J.; Teixidor, F.; Viñ as, C.; Sillanpä ä, R.; Pérez-Inestrosa, E.; Núñ ez, R. Chem. Eur. J. 2012, 18, 544.
      (c) Wee, K.-R.; Cho, Y.-J.; Jeong, S.; Kwon, S.; Lee, J.-D.; Suh, I.-H.; Kang, S. O. J. Am. Chem. Soc. 2012, 134, 17982.
      (d) Wee, K.-R.; Han, W.-S.; Cho, D. W.; Kwon, S.; Pac, C.; Kang, S. O. Angew. Chem., Int. Ed. 2012, 51, 2677.
      (e) Shi, C.; Sun, H.; Jiang, Q.; Zhao, Q.; Wang, J.; Huang, W.; Yan, H. Chem. Commun. 2013, 49, 4746.
      (f) Shi, C.; Sun, H.; Tang, X.; Lv, W.; Yan, H.; Zhao, Q.; Wang, J.; Huang, W. Angew. Chem., Int. Ed. 2013, 52, 13434.
      (g) Wee, K.-R.; Cho, Y.-J.; Song, J. K.; Kang, S. O. Angew. Chem., Int. Ed. 2013, 52, 9682.
      (h) Bae, H. J.; Chung, J.; Kim, H.; Park, J.; Lee, K. M.; Koh, T.-W.; Lee, Y. S.; Yoo, S.; Do, Y.; Lee, M. H. Inorg. Chem. 2014, 53, 128.
      (i) Naito, H.; Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed. 2015, 54, 5084.
      (j) Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Angew. Chem., Int. Ed. 2016, 55, 7171.
      (k) Kirlikovali, K. O.; Axtell, J. C.; Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. Chem. Sci. 2016, 7, 5132.
      (l) Naito, H.; Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. Angew. Chem., Int. Ed. 2017, 56, 254.
      (m) Tu, D.; Leong, P.; Guo, S.; Yan, H.; Lu, C.; Zhao, Q. Angew. Chem., Int. Ed. 2017, 56, 11370.

    6. [6]

      (a) Tang, C.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 7662.
      (b) Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Chem.-Eur. J. 2016, 22, 17542.

    7. [7]

      (a) Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
      (b) Kusari, U.; Li, Y.; Bradley, M. G.; Sneddon, L. G. J. Am. Chem. Soc. 2004, 126, 8662.
      (c) Li, Y.; Carroll, P. J.; Sneddon, L. G. Inorg. Chem. 2008, 47, 9193.

    8. [8]

      Cao, K.; Huang, Y.; Yang, J.; Wu, J. Chem. Commun. 2015, 51, 7257.  doi: 10.1039/C5CC01331C

    9. [9]

      (a) Jiang, W.; Knobler, C. B.; Curtis, C. E.; Mortimer, M. D.; Hawthorne, M. F. Inorg. Chem. 1995, 34, 3491.
      (b) Tominaga, M.; Morisaki, Y.; Chujo, Y. Macromol. Rapid Commun. 2013, 34, 1357.

    10. [10]

      (a) Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1295.
      (b) Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2017, 139, 14511.
      (c) Zhang, X.; Yan, H. Chem. Sci. 2018, 9, 3964.

    11. [11]

      (a) Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.
      (b) Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.
      (c) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.
      (d) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 10623.
      (e) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.
      (f) Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.
      (g) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 11840.
      (h) Quan, Y.; Tang, C.; Xie, Z. Chem. Sci. 2016, 7, 5838.
      (i) Zhang, Y.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Angew. Chem., Int. Ed. 2016, 55, 15609.
      (j) Zhao, D.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 3166.
      (k) Quan, Y.; Lyu, H.; Xie, Z. Chem. Commun. 2017, 53, 4818.
      (l) Shen, Y.; Pan, Y.; Zhang, K.; Liang, X.; Liu, J.; Spingler, B.; Duttwyler, S. Dalton Trans. 2017, 46, 3135.
      (m) Tang, C.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2017, 56, 8642.
      (n) Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2017, 139, 14511.

    12. [12]

      (a) Teixidor, F.; Barberà, G.; Vaca, A.; Kivekäs, R.; Sillanpää, R.; Oliva, J.; Viñas, C. J. Am. Chem. Soc. 2005, 127, 10158.
      (b) Yamazaki, H.; Ohta, K.; Endo, Y. Tetrahedron Lett. 2005, 46, 3119.

    13. [13]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Prokopcová, H.; Kappe, C. O. Angew. Chem., Int. Ed. 2009, 48, 2276.
      (c) Guo, L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 11810.
      (d) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
      (e) Yadav, M. R.; Nagaoka, M.; Kashihara, M.; Zhong, R.-L.; Miyazaki, T.; Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2017, 139, 9423.
      (f) Huo, P.; Li, J.; Liu, W.; Mei, G. Chin. J. Chem. 2017, 35, 363.
      (g) Ortega-Jiménez, F.; Penieres-Carrillo, J. G.; López-Cortés, J. G.; Ortega-Alfaro, M. C.; Lagunas-Rivera, S. Chin. J. Chem. 2017, 35, 1881.

    14. [14]

      Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.  doi: 10.1038/ncomms14827

    15. [15]

      (a) Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1976, 98, 4499.
      (b) Garrou, P. E. Chem. Rev. 1985, 85, 171.
      (c) Kong, K. C.; Cheng, C. H. J. Am. Chem. Soc. 1991, 113, 6313.
      (d) O'Keefe, D. F.; Dannock, M. C.; Marcuccio, S. M. Tetrahedron Lett. 1992, 33, 6679.
      (e) Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937.
      (f) Morita, D. K.; Stille, J. K.; Norton, J. R. J. Am. Chem. Soc. 1995, 117, 8576.
      (g) Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem. 1995, 60, 12.
      (h) Goodson, F. E.; Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1997, 119, 12441.
      (i) Grushin, V. V. Organometallics 2000, 19, 1888.
      (j) Kwong, F. Y.; Chan, K. S. Organometallics 2000, 19, 2058.
      (k) Kwong, F. Y.; Chan, K. S. Chem. Commun. 2000, 1069.
      (l) Kwong, F. Y.; Lai, C. W.; Chan, K. S. J. Am. Chem. Soc. 2001, 123, 8864.
      (m) Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484.
      (n) Baba, K.; Tobisu, M.; Chatani, N. Org. Lett. 2015, 17, 70.

    16. [16]

      (a) Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 8375.
      (b) Csákai, Z.; Skoda-Földes, R.; Kollár, L. Inorg. Chim. Acta 1999, 286, 93.
      (c) Wei, C. S.; Davies, G. H. M.; Soltani, O.; Albrecht, J.; Gao, Q.; Pathirana, C.; Hsiao, Y.; Tummala, S., T.; Eastgate, M. D. Angew. Chem., Int. Ed. 2013, 52, 5822.

    17. [17]

      Sheldrick, G. M. SADABS:Program for Empirical Absorption Correction of Area Detector Data, University of G ttingen, Germany, 1996.

    18. [18]

      Sheldrick, G. M. SHELXTL 5.10 for Windows NT:Structure Determination Software Programs, Bruker Analytical X-ray systems, Inc., Madison, Wisconsin, USA, 1997.

  • 加载中
    1. [1]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    2. [2]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    9. [9]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    10. [10]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    11. [11]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    12. [12]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    13. [13]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    14. [14]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    15. [15]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    16. [16]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    17. [17]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    18. [18]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    19. [19]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    20. [20]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

Metrics
  • PDF Downloads(5)
  • Abstract views(1002)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return