Synthesis and Antiproliferative Activities of Novel Pyrrolotriazine Derivatives
- Corresponding author: Li Xiabing, xiabingli@snnu.edu.cn Li Baolin, baolinli@snnu.edu.cn
Citation:
Zhang Yaling, Ma Shasha, Li Xiabing, Hou Qiaoli, Lü Mengjiao, Hao Yunxia, Wang Wei, Li Baolin. Synthesis and Antiproliferative Activities of Novel Pyrrolotriazine Derivatives[J]. Chinese Journal of Organic Chemistry,
;2018, 38(12): 3270-3277.
doi:
10.6023/cjoc201805005
Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Lancet Oncol. 2012, 13, 790.
doi: 10.1016/S1470-2045(12)70211-5
Siegel, R. L.; Miller, K. D.; Jemal, A. Ca-Cancer J. Clin. 2017, 67, 7.
doi: 10.3322/caac.21387
Anon, T. Cell 2017, 168, 545.
doi: 10.1016/j.cell.2017.01.036
Zhou, W.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A. Nature 2009, 462, 1070.
doi: 10.1038/nature08622
Dhillon, S. Targeted Oncol. 2015, 10, 153.
doi: 10.1007/s11523-015-0358-9
Cohen, M. H.; Williams, G. A.; Sridhara, R.; Chen, G.; Pazdur, R. Oncologist 2003, 8, 303.
doi: 10.1634/theoncologist.8-4-303
Ryan, Q.; Ibrahim, A.; Cohen, M. H.; Johnson, J.; Ko, C. W.; Sridhara, R.; Justice, R.; Pazdur, R. Oncologist 2008, 13, 1114.
doi: 10.1634/theoncologist.2008-0816
Kuwano, M.; Sonoda, K.; Murakami, Y.; Watari, K.; Ono, M. Pharmacol. Therapeut. 2016, 161, 97.
doi: 10.1016/j.pharmthera.2016.03.002
Jia, Y.; Yun, C. H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; Didonato, M.; Bursulaya, B.; Michellys, P. Y.; Epple, R.; Marsilje, T. H.; Mcneill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K. K.; Janne, P. A.; Eck, M. J. Nature 2016, 534, 129.
doi: 10.1038/nature17960
Chen, L.; Zhang, Y.; Liu, J.; Wang, W.; Li, X.; Zhao, L.; Wang, W.; Li, B. Eur. J. Med. Chem. 2017, 138, 689.
doi: 10.1016/j.ejmech.2017.06.023
Towles, J. K.; Clark, R. N.; Wahlin, M. D.; Uttamsingh, V.; Rettie, A. E.; Jackson, K. D. Drug Metab. Dispos. 2016, 44, 1584.
doi: 10.1124/dmd.116.070839
Chou, T.; Finn, R. S. Future Oncol. 2012, 8, 1083.
doi: 10.2217/fon.12.104
Finn, R. S.; Kang, Y. K.; Mulcahy, M.; Polite, B. N.; Lim, H. Y.; Walters, I.; Baudelet, C.; Manekas, D.; Park, J. W. Clin. Cancer Res. 2012, 18, 2090.
doi: 10.1158/1078-0432.CCR-11-1991
Wu, X.; Yang, M.; Shu, Q.; Zhu, C. WO 2013178021, 2013[Chem. Abstr. 2013, 187, 5272].
Li, Q.; Lescrinier, E.; Groaz, E.; Persoons, L.; Daelemans, D.; Herdewijn, P.; De Jonghe, S. ChemMedChem 2018, 13, 97.
doi: 10.1002/cmdc.v13.1
Degorce, S. L.; Anjum, R.; Dillman, K. S.; Drew, L.; Groombridge, S. D.; Halsall, C. T.; Lenz, E. M.; Lindsay, N. A.; Mayo, M. F.; Pink, J. H.; Robb, G. R.; Scott, J. S.; Stokes, S.; Xue, Y. Bioorg. Med. Chem. 2018, 26, 913.
Ma, S.-S.; Zhang, Y.-L.; Zhang, X.-Q.; Gu, H.-M.; Li, B.-L. Chem. Res. Appl. 2015, 27, 870 (in Chinese).
doi: 10.3969/j.issn.1004-1656.2015.06.016
Zhang, Y.; Chen, L.; Xu, H.; Li, X.; Zhao, L.; Wang, W.; Li, B.; Zhang, X. Eur. J. Med. Chem. 2018, 147, 77.
doi: 10.1016/j.ejmech.2018.01.090
Li, B.; Ma, S.; Li, J.; Wang, L.; Liu, J.; Chen, L. CN 104788460, 2015[Chem. Abstr. 2015, 119, 3561].
Gavai, A. V.; Wen-Ching, H.; Ping, C.; Ruediger, E. H.; Harold, M.; Fink. B. E.; Norris, D. J. WO 2005065266, 2005[Chem. Abstr. 2005, 638, 632].
Borzilleri, R. M.; Cai, Z. W.; Ellis, C.; Fargnoli, J.; Fura, A.; Gerhardt, T.; Goyal, B.; Hunt, J. T.; Mortillo, S.; Qian, L.; Tokarski, J.; Vyas, V.; Wautlet, B.; Zheng, X.; Bhide, R. S. Bioorg. Med. Chem. Lett. 2005, 15, 1429.
doi: 10.1016/j.bmcl.2004.12.079
Chandregowda, V.; Rao, G. V.; Reddy, G. C. Org. Process Res. Dev. 2007, 11, 813.
doi: 10.1021/op700054p
Zhan, D.; Li, S.; Zhao, H.; Lan, M. Chin. J. Org. Chem. 2011, 31, 207 (in Chinese).
Wang, D.; Yu, J.; Li, W.; Cui, Q.; Feng, S. Chin. J. Org. Chem. 2012, 32, 1547 (in Chinese).
Wong, R.; Turlova, E.; Feng, Z. P.; Rutka, J. T.; Sun, H. S. Oncotarget 2017, 8, 11239.
Chen, W. L.; Turlova, E.; Sun, C. L.; Kim, J. S.; Huang, S.; Zhong, X.; Guan, Y. Y.; Wang, G. L.; Rutka, J. T.; Feng, Z. P.; Sun, H. S. Mar. Drugs 2015, 13, 2505.
doi: 10.3390/md13042505
Zhang, Y.; Zhang, Y.; Liu, J.; Chen, L.; Zhao, L.; Li, B.; Wang, W. Bioorg. Med. Chem. Lett. 2017, 27, 1584.
doi: 10.1016/j.bmcl.2017.02.027
Bhaskar, B. S.; Singh, S. G.; Neeraj, G.; Kumar, T. P.; Srinivasan, C. V.; Lalit, W. WO 2010140168, 2010[Chem. Abstr. 2010, 153, 0544].
Wu, Z.; Wang, X.; Zhou, J. CN 1250773, 2000[Chem. Abstr. 2000, 862, 111].
Ogan, M. D.; Tran, S. B.; Rinehart, J. K. J. Labelled Compd. Radiopharm. 2006, 49, 139.
doi: 10.1002/(ISSN)1099-1344
Cohnen, E.; Dewald, R. Synthesis 1987, 566.
Zhang, Y.; Lü, M.; Zhang, Y.; Chen, L.; Wang, W.; Li, B. Chin. J. Org. Chem. 2017, 37, 1787 (in Chinese).
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Keliang Li , Guoqiang Dong , Shanchao Wu , Chunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280
Yang Liu , Minglu Li , Jianxun Ding , Xuesi Chen . Glycoengineering-assistant biomineralization for tumor blockade therapy. Chinese Chemical Letters, 2025, 36(5): 110146-. doi: 10.1016/j.cclet.2024.110146
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Zhihui Zhang , Ru Sun , Chong Bian , Hongbo Wang , Zhen Zhao , Panpan Lv , Jianzhong Lu , Haixin Zhang , Hulie Zeng , Yuanyuan Chen , Zhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Mengwei Ye , Qingqing Xu , Huanhuan Jian , Yiduo Ding , Wenpeng Zhao , Chenxiao Wang , Junya Lu , Shuaipeng Feng , Siling Wang , Qinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Honghao Sun , Huimin Zhao , Ronghui Yin , Chenxi Zhou , Ming Wu , Yueyang Deng , Zhanwei Zhou , Minjie Sun . Injectable hydrogel-based tumor vaccine with fibrotic tumor immune microenvironment remodeling to prevent breast cancer postoperative recurrence and metastases. Chinese Chemical Letters, 2025, 36(5): 110067-. doi: 10.1016/j.cclet.2024.110067
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755
Reagents and conditions: (ⅰ) NaNO2, HOAc, 0~5 ℃, 1 h; r.t., 1 h, 93.8%. (ⅱ) Na2S2O4, EtOH-H2O, 50 ℃, 82.6%. (ⅲ) NH3•H2O, 0 ℃, 20 min, 93.1%. (ⅳ) p-TsOH, 80 ℃, 70 min, 84.3%. (ⅴ) HOAc, r.t., 18 h. (ⅵ) 106 ℃, 6 h, 83.5%. (ⅶ) (1) NaH, DMF, -20 ℃, 45 min; (2) NH2Cl, Et2O, -20℃, 2 h; 91.5%. (ⅷ) DMF-DMA, 30 ℃, 5 min; H2SO4, 30℃, 1 h; 89.2%. (ⅸ) R1-aniline, p-TsOH, 112 ℃, 21 h, 25.7%~45.2%. (ⅹ) (1) THF/CH3OH, NaOH, 60 ℃, 2 h; (2) 2 mol•L-1 H2SO4; 75.0%~93.5%. (xi) 2-(methylsulfonyl)ethylamine•HCl, EDCl, DMAP, Et3N, r.t., 12 h, 86.1%~90.3%.