Citation: Chen Jinfa, Liu Xi, Han Bingbing, Ding Jindong, Zhang Youming, Lin Qi, Yao Hong, Wei Taibao. Preparation and Properties of Supramolecular Organogel Based on Iodine-Functionalized Pillar[5]arene[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2741-2746. doi: 10.6023/cjoc201805003 shu

Preparation and Properties of Supramolecular Organogel Based on Iodine-Functionalized Pillar[5]arene

  • Corresponding author: Wei Taibao, weitaibao@126.com
  • Received Date: 1 May 2018
    Revised Date: 28 May 2018
    Available Online: 15 October 2018

    Fund Project: the National Natural Science Foundation of China 21661028the National Natural Science Foundation of China 21574104the National Natural Science Foundation of China 21662031the National Natural Science Foundation of China 21262032Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661028, 21574104, 21262032)

Figures(9)

  • Pillararenes, a new kind of macrocyclic aromatic compounds, are closely attracted because it was used to construct supramolecular gels. In this paper, an iodine-functionalized pillar[5]arene was designed and synthesized. This pillar[5]arene can form a stable supramolecular organogel in cyclohexanol, and phase transition temperature is approximately 96 ℃. The formation process of the organogel was characterized by concentration dependent 1H NMR spectrum, 2D NOESY experiment, X-ray diffraction (XRD) powder diffraction and scanning electron microscope. The experiment results showed that a sheet-like structure was formed in self-assembly process of iodine-functionalized pillar[5]arene. Meanwhile, the fluorescent recognition properties of organogel were studied. With the addition of 0.5 equiv. of various metal ions (Fe3+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cu2+, Mg2+ and Hg2+) onto the organogel, Hg2+ and Ag+ can cause blue fluorescence quenching of the organogel after 10 min. Therefore, this gel can be used for fluorescent detection of Hg2+ and Ag+.
  • 加载中
    1. [1]

      Wada, A.; Tamaru, S.; Ikeda, M.; Hamachi, I. J. Am. Chem. Soc. 2009, 131, 5321.  doi: 10.1021/ja900500j

    2. [2]

      Appel, E. A.; Barrio, J. D.; Loh, X. J.; Scherman, O. A. Chem. Soc. Rev. 2012, 41, 6195.  doi: 10.1039/c2cs35264h

    3. [3]

      Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. J. Am. Chem. Soc. 2015, 137, 11590.  doi: 10.1021/jacs.5b07394

    4. [4]

      Ikeda, M.; Tanida, T.; Yoshii, T.; Kurotani, K.; Onogi, S.; Urayama, K.; Hamachi, I. Nat. Chem. 2014, 6, 511.  doi: 10.1038/nchem.1937

    5. [5]

      Yoshii, T.; Ikeda, M.; Hamachi, I. Angew. Chem., Int. Ed. 2014, 53, 7264.  doi: 10.1002/anie.201404158

    6. [6]

      Appel, E. A.; Loh, X. J.; Jones, S. T.; Biedermann, F.; Dreiss, C. A.; Scherman, O. A. J. Am. Chem. Soc. 2012, 134, 11767.  doi: 10.1021/ja3044568

    7. [7]

      Zhou, J.; Du, X.; Gao, Y.; Shi J.; Xu, B. J. Am. Chem. Soc. 2014, 136, 2970.  doi: 10.1021/ja4127399

    8. [8]

      O'Leary, L. E. R.; Fallas, J. A.; Bakota, E. L.; Kang, M. K.; Hartgerink, J. D. Nat. Chem. 2011, 3, 821.  doi: 10.1038/nchem.1123

    9. [9]

      Gao, Y.; Hu, J.; Ju, Y. Acta Chim. Sinica 2016, 74, 312(in Chinese).

    10. [10]

      Chen; J.-F.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Mater. Chem. Front. 2018, 2, 999.  doi: 10.1039/C8QM00065D

    11. [11]

      Jones, C. D.; Steed, J. W. Chem. Soc. Rev. 2016, 45, 6546.  doi: 10.1039/C6CS00435K

    12. [12]

      Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.  doi: 10.1039/b417081b

    13. [13]

      Norioka, C.; Kawamura, A.; Miyata, T. Polym. Chem. 2017, 8, 6050.  doi: 10.1039/C7PY01323J

    14. [14]

      Chang, R.; An, H.; Li, X.; Zhou, R.; Qin, J.; Tian, Y.; Deng, K. Polym. Chem. 2017, 8, 1263.  doi: 10.1039/C6PY02122K

    15. [15]

      Wang, H.; Ji, X.; Li, Z.; Zhu, C. N.; Yang, X.; Li, T.; Wu, Z. L.; Huang, F. Mater. Chem. Front. 2017, 1, 167.  doi: 10.1039/C6QM00164E

    16. [16]

      Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937.  doi: 10.1021/acs.chemrev.5b00765

    17. [17]

      Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.  doi: 10.1021/ar2003418

    18. [18]

      Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang L.; Meier, H. Angew. Chem., Int. Ed. 2009, 48, 9721.  doi: 10.1002/anie.200904765

    19. [19]

      Su, G.; Wu, D.; Li, Q.; Hou, J. Chin. J. Org. Chem. 2016, 36, 2130(in Chinese).
       

    20. [20]

      Shi, H.-X.; Cheng, X.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2018, 38, 1718(in Chinese).
       

    21. [21]

      Hu, X.-B.; Chen, L.; Si, W.; Yu, Y.; Hou, J.-L. Chem. Commun. 2011, 47, 4694.  doi: 10.1039/c1cc10633c

    22. [22]

      Ogoshi, T.; Yamafuji, D.; Aoki, T.; Yamagishi, T. Chem. Commun. 2012, 48, 6842.  doi: 10.1039/c2cc32865h

    23. [23]

      Cao, Y.; Hu, X.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y.; Wang, L. J. Am. Chem. Soc. 2014, 136, 10762.  doi: 10.1021/ja505344t

    24. [24]

      Chi, X.; Ji, X.; Xia, D.; Huang, F. J. Am. Chem. Soc. 2015, 137, 1440.  doi: 10.1021/ja512978n

    25. [25]

      Yang, K.; Pei, Y.; Wen, J.; Pei, Z. Chem. Commun. 2016, 52, 9316.  doi: 10.1039/C6CC03641D

    26. [26]

      Tan, L.-L.; Yang, Y.-W. J. Inclusion Phenom. 2015, 81, 13.  doi: 10.1007/s10847-014-0441-3

    27. [27]

      Wang, Y.; Ping, G.; Li, C. Chem. Commun. 2016, 52, 9858.  doi: 10.1039/C6CC03999E

    28. [28]

      Li, C. Chem. Commun. 2014, 50, 12420.  doi: 10.1039/C4CC03170A

    29. [29]

      Hua, B.; Shao, L.; Yu, G.; Huang, F. Chem. Commun. 2016, 52, 10016.  doi: 10.1039/C6CC04919B

    30. [30]

      Cui, W.; Tang, H.; Xu, L.; Wang, L.; Meier, H.; Cao, D. Macromol. Rapid Commun. 2017, 38, 1700161.  doi: 10.1002/marc.v38.14

    31. [31]

      Lin, Q.; Liu, L.; Zheng, F.; Mao, P.-P.; Liu, J.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. RSC Adv. 2017, 7, 34411.  doi: 10.1039/C7RA05750D

    32. [32]

      Yu, G.; Tang, G.; Huang, F. J. Mater. Chem. C 2014, 2, 6609.  doi: 10.1039/C4TC01022A

    33. [33]

      Zhou, J.; Hua, B.; Shao, L.; Feng, H.; Yu, G. Chem. Commun. 2016, 52, 5749.  doi: 10.1039/C6CC01860B

    34. [34]

      Yu, G.; Wu, D.; Li, Y.; Zhang, Z.; Shao, L.; Zhou, J.; Hu, Q.; Tang, G.; Huang, F. Chem. Sci. 2016, 7, 3017.  doi: 10.1039/C6SC00036C

    35. [35]

      Wang, R.; Sun, Y.; Zhang, F.; Song, M.; Tian, D.; Li, H. Angew. Chem., Int. Ed. 2017, 56, 5294.  doi: 10.1002/anie.201702175

    36. [36]

      Tan, L.-L.; Li, H.; Tao, Y.; Zhang, S. X.-A.; Wang, B.; Yang, Y.-W. Adv. Mater. 2014, 26, 7027.  doi: 10.1002/adma.201401672

    37. [37]

      Ogoshi, T.; Ueshima, N.; Yamagishi, T. Org. Lett. 2013, 15, 3742.  doi: 10.1021/ol4016546

    38. [38]

      Chen, R.; Jiang, H.; Gu, H.; Zhou, Q.; Wu, J.; Chen, D.; Zhang, J. Chem. Commun. 2015, 51, 12220.  doi: 10.1039/C5CC04720J

    39. [39]

      Liu, L.; Cao, D.; Jin, Y.; Tao, H.; Kou, Y.; Meier, H. Org. Biomol. Chem. 2011, 9, 7007.  doi: 10.1039/c1ob05871a

    40. [40]

      Wu, X.; Yu, Y.; Gao, L.; Hu, X.-Y.; Wang, L. Org. Chem. Front. 2016, 3, 966.  doi: 10.1039/C6QO00197A

    41. [41]

      Chen, P.; Mondal, J. H.; Zhou, Y.; Zhu, H.; Shi, B. Polym. Chem. 2016, 7, 5221.  doi: 10.1039/C6PY01123C

    42. [42]

      Yao, Y.; Sun, Y.; Yu, H.; Chen, W.; Dai, H.; Shi, Y. Dalton Trans. 2017, 46, 16802.  doi: 10.1039/C7DT04001F

    43. [43]

      Xing, H.; Shi, B. Polym. Chem. 2016, 7, 6159.  doi: 10.1039/C6PY01617K

    44. [44]

      Lin, Q.; Zhong, K.-P.; Zhu, J.-H.; Ding, L.; Su, J.-X.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Macromolecules 2017, 50, 7863.  doi: 10.1021/acs.macromol.7b01835

    45. [45]

      Chen, J.-F.; Lin, Q.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. Chem. Commun. 2017, 53, 13296.  doi: 10.1039/C7CC08365C

    46. [46]

      Wei, T.-B.; Chen, J.-F.; Cheng, X.-B.; Li, H.; Han, B.-B.; Yao, H.; Zhang, Y.-M.; Li, Q. Polym. Chem. 2017, 8, 2005.  doi: 10.1039/C7PY00335H

    47. [47]

      Lin, Q.; Lu, T.-T.; Zhu, X.; Wei, T.-B.; Li, H.; Zhang, Y.-M. Chem. Sci. 2016, 7, 5341.  doi: 10.1039/C6SC00955G

    48. [48]

      Lin, Q.; Lu, T.-T.; Zhu, X.; Sun, B.; Yang, Q.-P.; Wei, T.-B.; Zhang, Y.-M. Chem. Commun. 2015, 51, 1635.  doi: 10.1039/C4CC07814D

    49. [49]

      Zhang, P.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2014, 34, 1300(in Chinese).
       

    50. [50]

      Wei, T.-B.; Chen, J.-F.; Cheng, X.-B.; Li, H.; Han, B.-B.; Zhang, Y.-M.; Yao, H.; Lin, Q. Org. Chem. Front. 2017, 4, 210.  doi: 10.1039/C6QO00569A

    51. [51]

      Li, W.-T.; Qu, W.-J.; Zhang, H.-L.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2017, 37, 2619(in Chinese).
       

    52. [52]

      Shu, X.; Fan, J.; Li, J.; Wang, X.; Chen, W.; Jia, X.; Li, C. Org. Biomol. Chem. 2012, 10, 3393.  doi: 10.1039/c2ob25251a

    53. [53]

      Hussain, S.; De, S.; Lyer, P. K. ACS Appl. Mater. Interfaces 2013, 5, 2234.  doi: 10.1021/am400123j

    54. [54]

      Chen, J.-F.; Cheng, X.-B.; Li, H.; Han, B.-B.; Li, Q.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. New J. C hem. 2017, 41, 12707.  doi: 10.1039/C7NJ01856H

    55. [55]

      Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F. Angew. Chem., Int. Ed. 2011, 50, 1397.  doi: 10.1002/anie.v50.6

    56. [56]

      Wang, X.; Han, K.; Li, J.; Jia, X.; Li, C. Polym. Chem. 2013, 4, 3998.  doi: 10.1039/c3py00462g

    57. [57]

      Li, Z.-Y.; Zhang, Y.; Zhang, C.-W.; Chen, L.-J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2014, 136, 8577.  doi: 10.1021/ja413047r

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    11. [11]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    12. [12]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    13. [13]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

Metrics
  • PDF Downloads(6)
  • Abstract views(1864)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return