Citation: Zhou Jianping, Wu Baogeng, Zhou Zhikuan, Tian Jiangwei, Yuan Aihua. A Novel Naphthalene-Fused Boron Dipyrromethene (BODIPY)-Based Near Infrared Fluorescent Probe for Detecting Fluoride in Living Cells[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 406-411. doi: 10.6023/cjoc201804043 shu

A Novel Naphthalene-Fused Boron Dipyrromethene (BODIPY)-Based Near Infrared Fluorescent Probe for Detecting Fluoride in Living Cells

  • Corresponding author: Zhou Jianping, zkzhou@just.edu.cn Tian Jiangwei, jwtian@cpu.edu.cn Yuan Aihua, aihua.yuan@just.edu.cn
  • Received Date: 25 April 2018
    Revised Date: 17 July 2018
    Available Online: 11 February 2018

    Fund Project: China Postdoctoral Science Foundation No. 2017M621662Project supported by the National Natural Science Foundation of China (Nos. 21501073, 21775166, 51672114) and the China Postdoctoral Science Foundation (No. 2017M621662)Project supported by the National Natural Science Foundation of China Nos. 21501073Project supported by the National Natural Science Foundation of China 21775166Project supported by the National Natural Science Foundation of China 51672114

Figures(5)

  • A colorimetric and fluorescent turn-off chemosensor for fluoride based on novel naphthalene-fused boron dipyrromethene (BODIPY) 5 was designed and synthesized. In various anions, only upon addition of fluoride, the UV-Vis absorption peak of probe 5 red-shifted 100 nm, reaching the near infrared (NIR) region. Thus, it can be used as naked-eye detector for fluoride ion. In the fluorescence test, upon addition of fluoride, the fluorescence of probe 5 quenched significantly. Confocal fluorescence microscopy experiments demonstrate that 5 can be used for monitoring fluoride in living cells.
  • 加载中
    1. [1]

      (a) Kowada, T.; Maeda, H.; Kikuchi, K. Chem. Soc. Rev. 2015, 44, 4953.
      (b) Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.

    2. [2]

      Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.  doi: 10.1039/b910560n

    3. [3]

      Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A. Cancer, Causes Control, Pap. Symp. 2006, 17, 421.  doi: 10.1007/s10552-005-0500-6

    4. [4]

      Wong, M. H.; Fung, K. F.; Carr, H. P. Toxicol. Lett. 2003, 137, 111.  doi: 10.1016/S0378-4274(02)00385-5

    5. [5]

    6. [6]

      Barbieri, A.; Bandini, E.; Monti, F.; Praveen, V. K.; Armaroli, N. Top. Curr. Chem. 2016, 374, 47.  doi: 10.1007/s41061-016-0048-9

    7. [7]

      Fernandez, A.; Vendrell, M. Chem. Soc. Rev. 2016, 45, 1182.  doi: 10.1039/C5CS00567A

    8. [8]

      (a) Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
      (b) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013, 42, 622.

    9. [9]

      Zou, B.; Liu, H.; Mack, J.; Wang, S.; Tian, J.; Lu, H.; Li, Z.; Shen, Z. RSC Adv. 2014, 4, 53864.  doi: 10.1039/C4RA06416J

    10. [10]

      (a) Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.
      (b) Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.

    11. [11]

    12. [12]

      (a) Ni, Y.; Zeng, W.; Huang, K.-W.; Wu, J. Chem. Commun. 2013, 49, 1217.
      (b) Wakamiya, A.; Murakami, T.; Yamaguchi, S. Chem. Sci. 2013, 4, 1002.

    13. [13]

      (a) Shen, Z.; Röhr, H.; Rurack, K.; Uno, H.; Spieles, M.; Schulz, B.; Reck, G.; Ono, N. Chem.-Eur. J. 2004, 10, 4853.
      (b) Descalzo, A. B.; Xu, H.-J.; Xue, Z.-L.; Hoffmann, K.; Shen, Z.; Weller, M. G.; You, X.-Z.; Rurack, K. Org. Lett. 2008, 10, 1581.

    14. [14]

      Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550.  doi: 10.1021/ja077756j

    15. [15]

      Wu, Y.; Cheng, C.; Jiao, L.; Yu, C.; Wang, S.; Wei, Y.; Mu, X.; Hao, E. Org. Lett. 2014, 16, 748.  doi: 10.1021/ol4034622

    16. [16]

      Gai, L.; Mack, J.; Lu, H.; Nyokong, T.; Li, Z.; Kobayashi, N.; Shen, Z. Coord. Chem. Rev. 2015, 285, 24.  doi: 10.1016/j.ccr.2014.10.009

    17. [17]

      (a) Sheng, W.; Zheng, Y.-Q.; Wu, Q.; Wu, Y.; Yu, C.; Jiao, L.; Hao, E.; Wang, J.-Y.; Pei, J. Org. Lett. 2017, 19, 2893.
      (b) Sheng, W.; Cui, J.; Ruan, Z.; Yan, L.; Wu, Q.; Yu, C.; Wei, Y.; Hao, E.; Jiao, L. J. Org. Chem. 2017, 82, 10341.
      (c) Zhou, X.; Wu, Q.; Feng, Y.; Yu, Y.; Yu, C.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Chem.-Asian J. 2015, 10, 1979.

    18. [18]

      Zhou, Z.; Zhou, J.; Gai, L.; Yuan, A.; Shen, Z. Chem. Commun. 2017, 53, 6621.  doi: 10.1039/C7CC02918G

    19. [19]

      Bozdemir, O. A.; Sozmen, F.; Buyukcakir, O.; Guliyev, R.; Cakmak, Y.; Akkaya, E. U. Org. Lett. 2010, 12, 1400.  doi: 10.1021/ol100172w

    20. [20]

      Huang, L.; Luo, Y.; Sun, X.; Ju, H.; Tian, J.; Yu, B.-Y. Biosens. Bioelectron. 2017, 92, 724.  doi: 10.1016/j.bios.2016.10.004

    21. [21]

      Lu, H.; Wang, Q.; Gai, L.; Li, Z.; Deng, Y.; Xiao, X.; Lai, G.; Shen, Z. Chem.-Eur. J. 2012, 18, 7852.  doi: 10.1002/chem.201200169

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gom-perts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
       

  • 加载中
    1. [1]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    8. [8]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    15. [15]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(13)
  • Abstract views(1571)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return