Citation: Fang Jiemei, Fan Weizheng, Feng Bainian. Visible-Light Catalyzed Trifluoroethylation of Propiolates to Synthesize Coumarin Analogues[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2666-2672. doi: 10.6023/cjoc201804030 shu

Visible-Light Catalyzed Trifluoroethylation of Propiolates to Synthesize Coumarin Analogues

  • Corresponding author: Feng Bainian, fengbainian@jiangnan.edu.cn
  • Received Date: 16 April 2018
    Revised Date: 22 May 2018
    Available Online: 5 October 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21302066)the National Natural Science Foundation of China 21302066

Figures(1)

  • A practical strategy has been described for the preparation of trifluoroethyl-coumarin derivatives using a visible-light-promoted trifluoroethylation reaction of propiolate with trifluoroethyl iodide. These reactions could be carried out at room temperature in good chemical yields with good functional group tolerance.
  • 加载中
    1. [1]

      (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, Germany, 2013.
      (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (c) Gouverneur, V.; Seppelt, K. Chem. Rev. 2015, 115, 563.
      (d) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
      (e) Alonso, C.; Martínezde Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
      (f) Uneyama, K.; Katagiri, T.; Amii, H. Acc. Chem. Res. 2008, 41, 817.
      (g) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (h) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
      (i) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
      (j) Liang, T.; Neumann, C.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.

    2. [2]

      (a) Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed., 2015, 54, 3216.
      (b) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 76.
      (c) Harsanyi, A.; Sandford, G. Green Chem. 2015, 17, 2081.

    3. [3]

      (a) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
      (b) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
      (c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (f) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.

    4. [4]

      (a) Krasowski, M. D. Neuropharmacology 2000, 39, 1168.
      (b) Kumar, N.; Solt, L. A.; Conkright, J. J.; Wang, Y.; Istrate, M. A.; Busby, S. A.; Garcia-Ordonez, R. D.; Burris, T. P.; Griffin, P. R. Mol. Pharmacol. 2010, 77, 228.
      (c) Ho, T. W.; Mannix, L. K.; Fan, X.; Assaid, C.; Furtek, C.; Jones, C. J.; Lines, C. R.; Rapoport, A. M. Neurology 2008, 70, 1304.
      (d) Han, J.-B.; Hao, J.-H.; Zhang, C.-P.; Qin, H.-L. Curr. Org. Chem. 2015, 19, 1554.

    5. [5]

      (a) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
      (b) Xu, S.; Chen, H.-H.; Dai, J.-J.; Xu, H.-J. Org. Lett. 2014, 16, 2306.

    6. [6]

      (a) Zhao, Y.-C.; Hu, J.-B. Angew. Chem., Int. Ed. 2012, 51, 1033.
      (b) Liang, A.-P.; Li, X.-J.; Liu, D.-F.; Li, J.-Y.; Zou, D.-P.; Wu, Y.-J.; Wu, Y.-S. Chem. Commun. 2012, 48, 8273.

    7. [7]

      (a) Feng, Y.-S.; Xie, C.-Q.; Qiao, W.-L.; Xu, H.-J. Org. Lett. 2015, 15, 936.
      (b) Hwang, J.; Park, K.; Choe, J.; Min, H.; Song, K. H.; Lee, S. J. Org. Chem. 2014, 79, 3267.

    8. [8]

      (a) Zhang, H.; Wang, H. Y.; Luo, Y. X.; Chen, C. H.; Cao, Y. M.; Chen, P. H.; Guo, Y. L.; Lan, Y.; Liu, G. S. ACS Catal. 2018, 8, 2173.
      (b) Maraswami, M.; Pankajakshan, S.; Chen, G.; Loh, T. P. Org. Lett. 2017, 19, 4223.
      (c) Zhu, Y.; Gong, J. W.; Wang, Y. H. J. Org. Chem. 2017, 82, 7428.
      (d) Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2018, 20, 840.

    9. [9]

      Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
       

    10. [10]

      (a) Kärkäs, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.
      (b) Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000.
      (c) Hoffmann, N. Chem. Rev. 2008, 108, 1052.
      For a discussion on the early history of organic photochemistry, see:
      (d) Roth, H. D. Angew. Chem., Int. Ed. 1989, 28, 1193.
      For early publications on organic photochemistry, see:
      (e) Trommsdorff, H. Ann. Pharm. 1834, 11, 190.
      (f) Ciamician, G.; Silber, P. Ber. Dtsch. Chem. Ges. 1908, 41, 1928.

    11. [11]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (b) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
      (c) Ghogare, A. A.; Greer, A. Chem. Rev. 2016, 116, 9994.
      (c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (d) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (e) Chen, J. R.; Yan, D. M.; Wei, Q.; Xiao, W. J. ChemPhotoChem 2017, 1, 148.

    12. [12]

      (a) Asandei, A. D.; Adebolu, O. I.; Simpson, C. P.; Kim, J. S. Angew. Chem., Int. Ed. 2013, 52, 10027.
      (b) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. ACS Catal. 2014, 4, 2530.
      (c) Wei, Q.; Chen, J. R.; Hu, X. Q.; Yang, X. C.; Lu, B.; Xiao, W. J. Org. Lett. 2015, 17, 4464.
      (d) Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
      (e) Yadav, A. K.; Singh, K. N. Chem. Commun. 2018, 54, 1976.
      (f) Smirnov, V. O.; Maslov, A. S.; Kokorekin, V. A.; Korlyukovde, A. A.; Dilman, A. D. Chem. Commun. 2018, 54, 2236.
      (g) Harris, C. F.; Kuehner, C. S.; Bacsa, J.; Soper, J. D. Angew. Chem., Int. Ed. 2018, 57, 1311.

    13. [13]

      (a) Rong, J.; Deng, L.; Tan, P.; Ni, C. F.; Gu, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2016, 55, 2743.
      (b) Feng, S. B.; Xie, X. G.; Zhang, W. W.; Liu, L.; Zhong, Z. L.; Xu, D. Y.; She, X. G. Org. Lett. 2016, 18, 3846.
      (c) Zhu, M.; Han, X.; Fu, W. J.; Wang, Z. Q.; Ji, B. M.; Hao, X. Q.; Song, M. P.; Xu, C. J. Org. Chem. 2016, 81, 7282.
      (d) Zhou, N. N.; Xu, P.; Li, W. P.; Cheng, Y. X.; Zhu, C. J. Acta Chim. Sinica 2017, 75, 60(in Chinese).
      周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.
      (e) Rong, J.; Ni, C. F.; Wang, Y. Z.; Kuang, C. W.; Gu, Y. C.; Hu, J. B. Acta Chim. Sinica 2017, 75, 105(in Chinese).
      荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.

    14. [14]

      Feng, S. B.; Xie, X. G.; Zhang, W. W.; Liu, L.; Zhong, Z. L.; Xu, D. Y.; She, X. G. Org. Lett. 2016, 18, 3846.

  • 加载中
    1. [1]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    2. [2]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    6. [6]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    7. [7]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    13. [13]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    14. [14]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    15. [15]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    16. [16]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    17. [17]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(1)
  • Abstract views(817)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return