Citation: Li Zichen, Zhang Baochang, Zuo Chong, Liu Lei. Studies on Mirror-Image Proteins[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2412-2419. doi: 10.6023/cjoc201804014 shu

Studies on Mirror-Image Proteins

  • Corresponding author: Liu Lei, lliu@mail.tsinghua.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 4 May 2018
    Available Online: 17 September 2018

    Fund Project: the National Key R&D Program of China 2017YFA0505200the National Natural Science Foundation of China 21532004Project supported by the National Key R&D Program of China (No. 2017YFA0505200) and the National Natural Science Foundation of China (Nos. 21750005, 21532004, 91753205)the National Natural Science Foundation of China 21750005the National Natural Science Foundation of China 91753205

Figures(9)

  • Mirror-image proteins are composed of D-amino acids and glycine. They are the enantiomers of the native L-protein counterparts. Currently mirror-image proteins can not be obtained through recombinant technology and therefore, chemical synthesis is the only way to generate mirror-image proteins. As structurally defined and functionally variable chemical materials, mirror-image proteins have potential applications in racemic crystallography, biomimetic catalysis, soft materials, and diagnostics and therapeutic reagents. The chemical synthesis of mirror-image proteins and the advances in racemic X-ray crystallography, mirror-image drug discovery, as well as mirror-image biological systems are surveyed.
  • 加载中
    1. [1]

      Blackmond, D. G. Philos. Trans. R. Soc., B 2011, 366, 2878.  doi: 10.1098/rstb.2011.0130

    2. [2]

      Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.  doi: 10.1038/nchem.2517

    3. [3]

      (a) Milton, R. C. D.; Milton, S. C. F.; Kent, S. B. H. Science 1992, 256, 1445.
      (b) Pappenheimer, J. R.; Dahl, C. E.; Karnovsky, M. L.; Maggio, J. E. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1942.
      (c) Pappenheimer, J. R.; Karnovsky, M. L.; Maggio, J. E. J. Pharmacol. Exp. Ther. 1997, 280, 292.
      (d) Sadowski, M.; Pankiewicz, J.; Scholtzova, H.; Ripellino, J. A.; Li, Y. S.; Schmidt, S. D.; Mathews, P. M.; Fryer, J. D.; Holtzman, D. M.; Sigurdsson, E. M.; Wisniewski, T. Am. J. Pathol. 2004, 165, 937.

    4. [4]

      (a) Heck, S. D.; Siok, C. J.; Krapcho, K. J.; Kelbaugh, P. R.; Thadeio, P. F.; Welch, M. J.; Williams, R. D.; Ganong, A. H.; Kelly, M. E.; Lanzetti, A. J.; Gray, W. R.; Phillips, D.; Parks, T. N.; Jackson, H.; Ahlijanian, M. K.; Saccomano, N. A.; Volkmann, R. A. Science 1994, 266, 1065.
      (b) Kreil, G. Science 1994, 266, 996.

    5. [5]

      Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.  doi: 10.1021/ja00897a025

    6. [6]

      Kent, S. B. Annu. Rev. Biochem. 1988, 57, 957.  doi: 10.1146/annurev.bi.57.070188.004521

    7. [7]

      Schnolzer, M.; Alewood, P.; Jones, A.; Alewood, D.; Kent, S. B. Int. J. Pept. Protein Res. 1992, 40, 180.
       

    8. [8]

      Behrendt, R.; White, P.; Offer, J. J. Pept. Sci. 2016, 22, 4.  doi: 10.1002/psc.2836

    9. [9]

      Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.  doi: 10.1039/B700141J

    10. [10]

      Schnolzer, M.; Kent, S. B. Science 1992, 256, 221.  doi: 10.1126/science.1566069

    11. [11]

      Canne, L. E.; Ferredamare, A. R.; Burley, S. K.; Kent, S. B. H. J. Am. Chem. Soc. 1995, 117, 2998.  doi: 10.1021/ja00116a005

    12. [12]

      Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.  doi: 10.1126/science.7973629

    13. [13]

      Lee, C. L.; Li, X. Curr. Opin. Chem. Biol. 2014, 22, 108.  doi: 10.1016/j.cbpa.2014.09.023

    14. [14]

      Bode, J. W. Acc. Chem. Res. 2017, 50, 2104.  doi: 10.1021/acs.accounts.7b00277

    15. [15]

      Zheng, J.-S.; Tang, S.; Huang, Y.-C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.  doi: 10.1021/ar400012w

    16. [16]

      Lee, C. L.; Li, X. Sci. China, Chem. 2016, 59, 1061.

    17. [17]

      Torbeev, V. Y.; Kent, S. B. Angew. Chem., Int. Ed. 2007, 46, 1667.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Durek, T.; Torbeev, V. Y.; Kent, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 4846.  doi: 10.1073/pnas.0610630104

    19. [19]

      Wang, P.; Dong, S.; Shieh, J. H.; Peguero, E.; Hendrickson, R.; Moore, M. A. S.; Danishefsky, S. J. Science 2013, 342, 1357.  doi: 10.1126/science.1245095

    20. [20]

      Mandal, K.; Kent, S. B. Angew. Chem., Int. Ed. 2011, 50, 8029.  doi: 10.1002/anie.v50.35

    21. [21]

      Mandal, K.; Uppalapati, M.; Ault-Riche, D.; Kenney, J.; Lowitz, J.; Sidhu, S. S.; Kent, S. B. H. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14779.  doi: 10.1073/pnas.1210483109

    22. [22]

      Mende, F.; Seitz, O. Angew. Chem., Int. Ed. 2011, 50, 1232.  doi: 10.1002/anie.v50.6

    23. [23]

      Li, H.; Dong, S. Sci. China, Chem. 2017, 60, 201.

    24. [24]

      He, Q.; Li, J.; Qi, Y.; Wang, Z.; Huang, Y.; Liu, L. Sci. China, Chem. 2017, 60, 621.  doi: 10.1007/s11426-016-0386-4

    25. [25]

      Warren, J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6576.  doi: 10.1021/ja0491836

    26. [26]

      (a) Zheng, J.-S.; Chang, H.-N.; Wang, F.-L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.
      (b) Melnyk, O.; Agouridas, V. Curr. Opin. Chem. Biol. 2014, 22, 137.

    27. [27]

      Ingenito, R.; Bianchi, E.; Fattori, D.; Pessi, A. J. Am. Chem. Soc. 1999, 121, 11369.  doi: 10.1021/ja992668n

    28. [28]

      Blanco-Canosa, J. B.; Dawson, P. E. Angew. Chem., Int. Ed. 2008, 47, 6851.  doi: 10.1002/anie.v47:36

    29. [29]

      Tofteng, A. P.; Sorensen, K. K.; Conde-Frieboes, K. W.; Hoeg-Jensen, T.; Jensen, K. J. Angew. Chem., Int. Ed. 2009, 48, 7411.  doi: 10.1002/anie.v48:40

    30. [30]

      Fang, G.-M.; Li, Y.-M.; Shen, F.; Huang, Y.-C.; Li, J.-B.; Lin, Y.; Cui, H.-K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.  doi: 10.1002/anie.201100996

    31. [31]

      Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6705.  doi: 10.1073/pnas.95.12.6705

    32. [32]

      Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.  doi: 10.1002/anie.201310010

    33. [33]

      Li, Y. M.; Yang, M. Y.; Huang, Y. C.; Li, Y. T.; Chen, P. R.; Liu, L. ACS Chem. Biol. 2012, 7, 1015.  doi: 10.1021/cb300020s

    34. [34]

      (a) Xu, W.; Jiang, W.; Wang, J.; Yu, L.; Chen, J.; Liu, X.; Liu, L.; Zhu, T. F. Cell Discovery 2017, 3, 17008.
      (b) Jiang, W.; Zhang, B.; Fan, C.; Wang, M.; Wang, J.; Deng, Q.; Liu, X.; Chen, J.; Zheng, J.; Liu, L.; Zhu, T. F. Cell Discovery 2017, 3, 17037.

    35. [35]

      (a) Pentelute, B. L.; Gates, Z. P.; Tereshko, V.; Dashnau, J. L.; Vanderkooi, J. M.; Kossiakoff, A. A.; Kent, S. B. H. J. Am. Chem. Soc. 2008, 130, 9695.
      (b) Yeates, T. O.; Kent, S. B. H. Annu. Rev. Biophys. 2012, 41, 41.

    36. [36]

      Mortenson, D. E.; Satyshur, K. A.; Guzei, I. A.; Forest, K. T.; Gellman, S. H. J. Am. Chem. Soc. 2012, 134, 2473.  doi: 10.1021/ja210045s

    37. [37]

      Zawadzke, L. E.; Berg, J. M. Proteins:Struct., Funct., Genet. 1993, 16, 301.  doi: 10.1002/(ISSN)1097-0134

    38. [38]

      Wukovitz, S. W.; Yeates, T. O. Nat. Struct. Biol. 1995, 2, 1062.  doi: 10.1038/nsb1295-1062

    39. [39]

      Mandal, K.; Pentelute, B. L.; Tereshko, V.; Kossiakoff, A. A.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 1362.  doi: 10.1021/ja8077973

    40. [40]

      Pentelute, B. L.; Mandal, K.; Gates, Z. P.; Sawaya, M. R.; Yeates, T. O.; Kent, S. B. H. Chem. Commun. 2010, 46, 8174.  doi: 10.1039/c0cc03148h

    41. [41]

      Banigan, J. R.; Mandal, K.; Sawaya, M. R.; Thammavongsa, V.; Hendrickx, A. P. A.; Schneewind, O.; Yeates, T. O.; Kent, S. B. H. Protein Sci. 2010, 19, 1840.  doi: 10.1002/pro.468

    42. [42]

      Mandal, K.; Pentelute, B. L.; Tereshko, V.; Thammavongsa, V.; Schneewind, O.; Kossiakoff, A. A.; Kent, S. B. H. Protein Sci. 2009, 18, 1146.  doi: 10.1002/pro.v18:6

    43. [43]

      Avital-Shmilovici, M.; Mandal, K.; Gates, Z. P.; Phillips, N. B.; Weiss, M. A.; Kent, S. B. H. J. Am. Chem. Soc. 2013, 135, 3173.  doi: 10.1021/ja311408y

    44. [44]

      Yan, B.; Ye, L.; Xu, W.; Liu, L. Bioorg. Med. Chem. 2017, 25, 4953.  doi: 10.1016/j.bmc.2017.05.020

    45. [45]

      Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429.  doi: 10.1021/jacs.6b04031

    46. [46]

      Okamoto, R.; Mandal, K.; Sawaya, M. R.; Kajihara, Y.; Yeates, T. O.; Kent, S. B. H. Angew. Chem., Int. Ed. 2014, 53, 5194.

    47. [47]

      Gao, S.; Pan, M.; Zheng, Y.; Huang, Y.; Zheng, Q.; Sun, D.; Lu, L.; Tan, X.; Tan, X.; Lan, H.; Wang, J.; Wang, T.; Wang, J.; Liu, L. J. Am. Chem. Soc. 2016, 138, 14497.  doi: 10.1021/jacs.6b09545

    48. [48]

      Zhao, L.; Lu, W. Curr. Opin. Chem. Biol. 2014, 22, 56.

    49. [49]

      Dintzis, H. M.; Symer, D. E.; Dintzis, R. Z.; Zawadzke, L. E.; Berg, J. M. Proteins:Struct., Funct., Genet. 1993, 16, 306.  doi: 10.1002/(ISSN)1097-0134

    50. [50]

      Sun, N.; Funke, S. A.; Willbold, D. J. Biotechnol. 2012, 161, 121.  doi: 10.1016/j.jbiotec.2012.05.019

    51. [51]

      Devlin, J. J.; Panganiban, L. C.; Devlin, P. E. Science 1990, 249, 404  doi: 10.1126/science.2143033

    52. [52]

      Schumacher, T. N. M.; Mayr, L. M.; Minor, D. L.; Milhollen, M. A.; Burgess, M. W.; Kim, P. S. Science 1996, 271, 1854.  doi: 10.1126/science.271.5257.1854

    53. [53]

      (a) Liu, M.; Li, C.; Pazgier, M.; Li, C.; Mao, Y.; Lv, Y.; Gu, B.; Wei, G.; Yuan, W.; Zhan, C.; Lu, W.-Y.; Lu, W. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14321.
      (b) Liu, M.; Pazgier, M.; Li, C.; Yuan, W.; Li, C.; Lu, W. Angew. Chem., Int. Ed. 2010, 49, 3649.

    54. [54]

      (a) Welch, B. D.; VanDemark, A. P.; Heroux, A.; Hill, C. P.; Kay, M. S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16828.
      (b) Welch, B. D.; Francis, J. N.; Redman, J. S.; Paul, S.; Weinstock, M. T.; Reeves, J. D.; Lie, Y. S.; Whitby, F. G.; Eckert, D. M.; Hill, C. P.; Root, M. J.; Kay, M. S. J. Virol. 2010, 84, 11235.

    55. [55]

      Mueller-Schiffmann, A.; Maerz-Berberich, J.; Andreyeva, A.; Roenicke, R.; Bartnik, D.; Brener, O.; Kutzsche, J.; Horn, A. H. C.; Hellmert, M.; Polkowska, J.; Gottmann, K.; Reymann, K. G.; Funke, S. A.; Nagel-Steger, L.; Moriscot, C.; Schoehn, G.; Sticht, H.; Willbold, D.; Schrader, T.; Korth, C. Angew. Chem., Int. Ed. 2010, 49, 8743.  doi: 10.1002/anie.201004437

    56. [56]

      Chang, H. N.; Liu, B. Y.; Qi, Y. K.; Zhou, Y.; Chen, Y. P.; Pan, K. M.; Li, W. W.; Zhou, X. M.; Ma, W. W.; Fu, C. Y.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2015, 54, 11760.  doi: 10.1002/anie.201506225

    57. [57]

      Muller, S.; Benkirane, N.; Guichard, G.; Van Regenmortel, M. H.; Brown, F. Expert Opin. Invest. Drugs 1998, 7, 1429.  doi: 10.1517/13543784.7.9.1429

    58. [58]

      Martins, R.; Lithgow, G. J.; Link, W. Aging Cell 2016, 15, 196.  doi: 10.1111/acel.2016.15.issue-2

    59. [59]

      Baar, M. P.; Brandt, R. M. C.; Putavet, D. A.; Klein, J. D. D.; Derks, K. W. J.; Bourgeois, B. R. M.; Stryeck, S.; Rijksen, Y.; van Willigenburg, H.; Feijtel, D. A.; van der Pluijm, I.; Essers, J.; van Cappellen, W. A.; van Ijcken, W. F.; Houtsmuller, A. B.; Pothof, J.; de Bruin, R. W. F.; Madl, T.; Hoeijmakers, J. H. J.; Campisi, J.; de Keizer, P. L. J. Cell 2017, 169, 132.  doi: 10.1016/j.cell.2017.02.031

    60. [60]

      Weinstock, M. T.; Jacobsen, M. T.; Kay, M. S. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11679.  doi: 10.1073/pnas.1410900111

    61. [61]

      (a) Kondepudi, D. K.; Kaufman, R. J.; Singh, N. Science 1990, 250, 975.
      (b) Cordova, A.; Engqvist, M.; Ibrahem, I.; Casas, J.; Sunden, H. Chem. Commun. 2005, 2047.
      (c) Islas, J. R.; Lavabre, D.; Grevy, J. M.; Lamoneda, R. H.; Cabrera, H. R.; Micheau, J. C.; Buhse, T. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13743.
      (d) Glavin, D. P.; Dworkin, J. P. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 5487.

    62. [62]

      Pech, A.; Achenbach, J.; Jahnz, M.; Schulzchen, S.; Jarosch, F.; Bordusa, F.; Klussmann, S. Nucleic Acids Res. 2017, 45, 3997.  doi: 10.1093/nar/gkx079

    63. [63]

      Wei, X.; Zhan, C.; Shen, Q.; Fu, W.; Xie, C.; Gao, J.; Peng, C.; Zheng, P.; Lu, W. Angew. Chem., Int. Ed. 2015, 54, 3023.  doi: 10.1002/anie.201411226

    64. [64]

      Wei, X.; Zhan, C.; Chen, X.; Hou, J.; Xie, C.; Lu, W. Mol. Pharm. 2014, 11, 3261.  doi: 10.1021/mp500086e

    65. [65]

      Prades, R.; Oller-Salvia, B.; Schwarzmaier, S. M.; Selva, J.; Moros, M.; Balbi, M.; Grazu, V.; de La Fuente, J. M.; Egea, G.; Plesnila, N.; Teixido, M.; Giralt, E. Angew. Chem., Int. Ed. 2015, 54, 3967.  doi: 10.1002/anie.201411408

    66. [66]

      Xie, Z.; Shen, Q.; Xie, C.; Lu, W.; Peng, C.; Wei, X.; Li, X.; Su, B.; Gao, C.; Liu, M. Cancer Lett. 2015, 369, 144.  doi: 10.1016/j.canlet.2015.08.010

    67. [67]

      Wang, J.; Lei, Y.; Xie, C.; Lu, W.; Wagner, E.; Xie, Z.; Gao, J.; Zhang, X.; Yan, Z.; Liu, M. Bioconjugate Chem. 2014, 25, 414.  doi: 10.1021/bc400552t

    68. [68]

      Ren, Y.; Zhan, C.; Gao, J.; Zhang, M.; Wei, X.; Ying, M.; Liu, Z.; Lu, W. Mol. Pharm. 2018, 15, 592.  doi: 10.1021/acs.molpharmaceut.7b00944

    69. [69]

      Chen, X.; Fan, Z.; Chen, Y.; Fang, X.; Sha, X. PloS One 2013, 8, e80390.
       

    70. [70]

      Li, Z.; Xie, J.; Peng, S.; Liu, S.; Wang, Y.; Lu, W.; Shen, J.; Li, C. Bioconjugate Chem. 2017, 28, 216.

    71. [71]

      Huang, L.; Xie, J.; Bi, Q.; Li, Z.; Liu, S.; Shen, Q.; Li, C. Mol. Pharm. 2017, 14, 1742.  doi: 10.1021/acs.molpharmaceut.6b01174

    72. [72]

      Mao, J.; Ran, D.; Xie, C.; Shen, Q.; Wang, S.; Lu, W. ACS Appl. Mater. Interfaces 2017, 9, 24462.  doi: 10.1021/acsami.7b05617

    73. [73]

      Su, T.; Long, Y.; Deng, C.; Feng, L.; Zhang, X.; Chen, Z.; Li, C. Int. J. Pharm. 2014, 476, 241.  doi: 10.1016/j.ijpharm.2014.09.055

    74. [74]

      Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y.; Mei, X. Drug Delivery 2017, 24, 1045.  doi: 10.1080/10717544.2017.1344334

    75. [75]

      Uppalapati, M.; Lee, D. J.; Mandal, K.; Li, H.; Miranda, L. P.; Lowitz, J.; Kenney, J.; Adams, J. J.; Ault-Riche, D.; Kent, S. B.; Sidhu, S. S. ACS Chem. Biol. 2016, 11, 1058.  doi: 10.1021/acschembio.5b01006

    76. [76]

      Noguchi, T.; Oishi, S.; Honda, K.; Kondoh, Y.; Saito, T.; Ohno, H.; Osada, H.; Fujii, N. Chem. Commun. 2016, 52, 7653.  doi: 10.1039/C6CC03114E

    77. [77]

      Eckert, D. M.; Malashkevich, V. N.; Hong, L. H.; Carr, P. A.; Kim, P. S. Cell 1999, 99, 103.  doi: 10.1016/S0092-8674(00)80066-5

    78. [78]

      (a) Bartnik, D.; Funke, S. A.; Andrei-Selmer, L. C.; Bacher, M.; Dodel, R.; Willbold, D. Rejuvenation Res. 2010, 13, 202.
      (b) Liu, H.; Funke, S. A.; Willbold, D. Rejuvenation Res. 2010, 13, 210.

    79. [79]

      Gulyas, B.; Spenger, C.; Beliczai, Z.; Gulya, K.; Kasa, P.; Jahan, M.; Jia, Z.; Weber, U.; Pfeifer, A.; Muhs, A.; Willbold, D.; Halldin, C. Neurochem. Int. 2012, 60, 153.  doi: 10.1016/j.neuint.2011.10.010

    80. [80]

      Jahan, M.; Nag, S.; Krasikova, R.; Weber, U.; Muhs, A.; Pfeifer, A.; Spenger, C.; Willbold, D.; Gulyas, B.; Halldin, C. Nucl. Med. Biol. 2012, 39, 315.  doi: 10.1016/j.nucmedbio.2011.09.008

    81. [81]

      Funke, S. A.; van Groen, T.; Kadish, I.; Bartnik, D.; Nagel-Steger, L.; Brener, O.; Sehl, T.; Batra-Safferling, R.; Moriscot, C.; Schoehn, G.; Horn, A. H. C.; Mueller-Schiffmann, A.; Korth, C.; Sticht, H.; Willbold, D. ACS Chem. Neurosci. 2010, 1, 639.  doi: 10.1021/cn100057j

    82. [82]

      Sakamoto, K.; Otake, K.; Umemoto, T. Bioorg. Med. Chem. Lett. 2017, 27, 826.  doi: 10.1016/j.bmcl.2017.01.023

    83. [83]

      Kuang, Y.; Miki, K.; Parr, C. J. C.; Hayashi, K.; Takei, I.; Li, J.; Iwasaki, M.; Nakagawa, M.; Yoshida, Y.; Saito, H. Cell Chem. Biol. 2017, 24, 685.  doi: 10.1016/j.chembiol.2017.04.010

    84. [84]

      Maximova, K.; Venken, T.; Reuter, N.; Trylska, J. Biochim. Biophys. Acta 2018, 1860, 458.  doi: 10.1016/j.bbamem.2017.11.001

    85. [85]

      Noguchi, T.; Ishiba, H.; Honda, K.; Kondoh, Y.; Osada, H.; Ohno, H.; Fujii, N.; Oishi, S. Bioconjugate Chem. 2017, 28, 609.  doi: 10.1021/acs.bioconjchem.6b00692

    86. [86]

      Levinson, A. M.; McGee, J. H.; Roberts, A. G.; Creech, G. S.; Wang, T.; Peterson, M. T.; Hendrickson, R. C.; Verdine, G. L.; Danishefsky, S. J. J. Am. Chem. Soc. 2017, 139, 7632.  doi: 10.1021/jacs.7b02988

    87. [87]

      (a) Li, Y.; Lei, Y.; Wagner, E.; Xie, C.; Lu, W.; Zhu, J.; Shen, J.; Wang, J.; Liu, M. Bioconjugate Chem. 2013, 24, 133.
      (b) Li, X.; Xie, Z.; Xie, C.; Lu, W.; Gao, C.; Ren, H.; Ying, M.; Wei, X.; Gao, J.; Su, B.; Ren, Y.; Liu, M. Bioconjugate Chem. 2015, 26, 1494.

  • 加载中
    1. [1]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    14. [14]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    15. [15]

      Jialin Xie Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Life’s Guardian Angel: Progesterone. University Chemistry, 2024, 39(10): 416-419. doi: 10.12461/PKU.DXHX202403068

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    18. [18]

      Haiyuan Wang Shanshan Cheng Hui Yang . Development and Exploration of the Ideological and Political Education Framework in Applied Chemistry Postgraduate Curriculum. University Chemistry, 2024, 39(6): 72-82. doi: 10.3866/PKU.DXHX202311020

    19. [19]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    20. [20]

      Shuangyan Huan Jianhui Jiang Gongke Li Wenqing Zhang Na Li Yi Yang Bin Hu Yang Tian Shuo Wu Sichun Zhang Yonghai Yue Dechen Jiang Zengping Chen Zhonglin Lu Cheng Cui Yuzhi Wang Weihong Tan . Exploration on the Construction of Analytical Chemistry Core Curriculum in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 22-26. doi: 10.12461/PKU.DXHX202409003

Metrics
  • PDF Downloads(124)
  • Abstract views(5411)
  • HTML views(2139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return