Citation: Zhang Xuewen, Li Pengfei, Yuan Yu, Jia Xiaodong. Synthesis of Quinoline Derivatives Containing Lactone Structure Promoted by Radical Cation Salt[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2435-2442. doi: 10.6023/cjoc201804012 shu

Synthesis of Quinoline Derivatives Containing Lactone Structure Promoted by Radical Cation Salt

  • Corresponding author: Yuan Yu, yyuan@yzu.edu.cn Jia Xiaodong, jiaxd1975@163.com
  • Received Date: 8 April 2018
    Revised Date: 17 May 2018
    Available Online: 1 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 1362030, 21562038)the National Natural Science Foundation of China 21562038the National Natural Science Foundation of China 1362030

Figures(3)

  • Using aniline derivatives containing lactone structure and styrenes as the starting materials, a series of lactone substituted quinolines were constructed efficiently by oxidative Povarov reaction, promoted by radical cation salt. This reaction provides a new method to achieve the construction of functionalized quinoline skeletons. The mechanistic study reveales that the oxidation of the saturated C-H bond is mediated by free radical intermediate.
  • 加载中
    1. [1]

      (a) Zheng, Q.; Wang, S.; Liu, W. Tetrahedron 2014, 70, 7686.
      (b) Leeson, P. D.; Baker, R.; Carling, R. W.; Curtis, N. R.; Moore, K. W.; Williams, B. J.; Foster, A. C.; Donald, A. E.; Kemp, J. A.; Marshall, G. R. J. Med. Chem. 1991, 34, 1243.
      (c) Manfredini, S.; Pavan, B.; Vertuani, S.; Scaglianti, M.; Compagnone, D.; Biondi, C.; Scatturin, A.; Tanganelli, S.; Ferraro, L.; Prasad, P.; Dalpiaz, A. J. Med. Chem. 2002, 45, 559.
      (d) Pearce, A. N.; Chia, E. W.; Berridge, M. V.; Clark, G. R.; Harper, J. L.; Larsen, L.; Maas, E. W.; Page, M. J.; Perry, N. B.; Webb, V. L.; Copp, B. R. J. Nat. Prod. 2007, 70, 936.

    2. [2]

      LaMontagne, M. P.; Blumbergs, P.; Smith, D. C. J. Med. Chem. 1989, 32, 1728.  doi: 10.1021/jm00128a010

    3. [3]

      Elmore, S. W.; Coghlan, M. J.; Anderson, D. D.; Pratt, J. K.; Green, B. E.; Wang, A. X.; Stashko, M. A.; Lin, C. W.; Tyree, C. M.; Miner, J. N.; Jacobson, P. B.; Wilcox, D. M.; Lane, B. C. J. Med. Chem. 2001, 44, 4481.

    4. [4]

      Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B. A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Jayathirtha Rao, V. Bioorg. Med. Chem. 2006, 14, 4600.  doi: 10.1016/j.bmc.2006.02.020

    5. [5]

      (a) Curran, A. C. W. J. Chem. Soc., Perkin Trans. 1 1976, 975.
      (b) Misani, F.; Bogert, M. T. J. Org. Chem. 1945, 10, 347.
      (c) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. 2007, 72, 8489.

    6. [6]

      (a) Sakai, N.; Aoki, D.; Hamajima, T.; Konakahara, T. Tetrahe-dron Lett. 2006, 47, 1261.
      (b) Wu, Y. C.; Liu, L.; Li, H. J.; Wang, D.; Chen, Y. J. J. Org. Chem. 2006, 71, 6592.
      (c) Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668;
      (d) Eisch, J. J.; Dluzniewski, T. J. Org. Chem. 1989, 54, 1269.

    7. [7]

      (a) Ryabukhin, S. V.; Naumchik, V. S.; Plaskon, A. S.; Grygorenko, O. O.; Tolmachev, A. A. J. Org. Chem. 2011, 76, 5774.
      (b) Luo, W.; Mu, Q.; Qiu, W.; Liu, T.; Yang, F.; Liu, X.; Tang, J. Tetrahedron 2011, 67, 7090.
      (c) Atechian, S.; Nock, N.; Norcross, R. D.; Ratni, H.; Thomas, A. W.; Verron, J.; Masciadri, R. Tetrahedron 2007, 63, 2811.
      (d) Wu, J.; Xia, H. G.; Gao, K. Org. Biomol. Chem. 2006, 4, 126.

    8. [8]

      (a) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721.
      (b) Ribelles, P.; Sridharan, V.; Villacampa, M.; Ramos, M. T.; Menéndez, J. C. Org. Biomol. Chem. 2013, 11, 569.
      (c) Chandrashekarappa, K. K. H.; Mahadevan, K. M.; Manjappa, K. B. Tetrahedron Lett. 2013, 54, 1368.

    9. [9]

    10. [10]

      Hou, W.; Jia, X. Chin. J. Org. Chem. 2018, 38, 999(in Chinese).

    11. [11]

      (a) Jia, X.; Zhu, Y.; Yuan, Y.; Zhang, X.; Lü, S.; Zhang, L.; Luo, L. ACS Catal. 2016, 6, 6033.
      (b) Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Org. Lett. 2012, 14, 4030.
      (c) Liu, J.; Liu, F.; Zhu, Y.; Ma, X.; Jia, X. Org. Lett. 2015, 17, 1409.
      (d) Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. Adv. Synth. Catal. 2014, 356, 1210.
      (e) Lv, S.; Zhu, Y.; Ma, X.; Jia, X. Adv. Synth. Catal. 2016, 358, 1004.
      (f) Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. J. Org. Chem. 2013, 78, 9450.
      (g) Wang, Y.; Peng, F.; Liu, J.; Huo, C.; Wang, X.; Jia, X. J. Org. Chem. 2015, 80, 609.

    12. [12]

      Fort, D. A.; Woltering, T. J.; Nettekoven, M.; Knust, H.; Bach, T. Chem. Commun. 2013, 49, 2989.  doi: 10.1039/c3cc40757h

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    10. [10]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    15. [15]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(2)
  • Abstract views(867)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return