Citation: Zhao Bangtun, Fu Huimin, Chen Xiaoji, Zhu Weimin. A New Method for Synthesizing Tetrathiafulvalene Vinylogues[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2116-2121. doi: 10.6023/cjoc201803055 shu

A New Method for Synthesizing Tetrathiafulvalene Vinylogues

  • Corresponding author: Zhao Bangtun, zbt@lynu.edu.cn Zhu Weimin, zhuwm@zzu.edu.cn
  • Received Date: 31 March 2018
    Revised Date: 6 May 2018
    Available Online: 11 August 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21172105)the National Natural Science Foundation of China 21172105

Figures(6)

  • Tetrathiafulvalene vinylogues (TTFV) have attracted for organic-based electronics as their excellent electron donating properties. The most commonly used synthetic access to TTFV is by the oxidative dimerization of corresponding dithiafulvene (DTF) precursors, the oxidants like as I2 and AgBF4 have been reported to promote the dimerization reaction in most cases. However, this method is very limited to lower yield and higher toxicity. Due to the naphthyl fluorescence property and cyanoethylthiolate reactive feature, and through trimethylphosphite-mediated cross-coupling reaction, 4, 5-bis(2-cyanoethylsulfanyl)-1, 3-dithiole-2-thione (1) reacted with 1-naphthaldehyde to give the dithiafulvalene compound (DTF 2) with the yield of 48%. The dithiafulvalene compound 2 has subjected to an p-chloranil (CA)/methanesulfonic acid (MSA) oxidative dimerization reaction and then a brief reductive aqueous workup with Na2S2O3 to gain tetrathiafulvalene vinylogues (TTFV 3). The optimal reaction conditions achieved for the oxidative TTFV formation are 1.5 equiv. of CA catalyst, the 1:10 volume ratio of MSA and DCM, under nitrogen atomsphere and room temperature, 2.0 h reaction time, and the yield of TTFV 3 with up to 86.7%. All novel compounds were characterized by 1H NMR, 13C NMR, FT-IR and MS methods. Meanwhile, the structure of 3 was identified by X-ray diffraction analysis. Compared with the traditional I2 oxidative dimerization method, the results show that this method is simple, economic and efficient.
  • 加载中
    1. [1]

      Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Canevet, D.; Sallé, M.; Zhang, G. X.; Zhu, D. B. Chem. Commun. 2009, 2245.

    3. [3]

      Nielsen, M. B.; Lomholt, C.; Becher, J. Chem. Soc. Rev. 2000, 29, 153.  doi: 10.1039/a803992e

    4. [4]

      Chen, T.; Liu, W. J.; Cong, Z. Q.; Yin, B. Z. Chin. J. Org. Chem. 2005, 25, 570(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.05.014
       

    5. [5]

      Yamada, J.; Sugimoto, T. TTF Chemistry Fundamentals and Applications of Tetrathiafulvalene, Kodansha and Springer, Tokyo, 2004.

    6. [6]

      Feng, M.; Gao, L.; Deng, Z. T.; Ji, W.; Guo, X. F.; Du, S. X.; Shi, D. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. J. Am. Chem. Soc. 2007, 129, 2204.  doi: 10.1021/ja067037p

    7. [7]

      Zhu, Y. L.; Yang, Y. J.; Yin, Q. F.; Zhu, D. B. Chin. J. Org. Chem. 2005, 25, 1167(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.10.002
       

    8. [8]

      Yoshida, Z. I.; Kawase, T.; Awaji, H.; Sugimoto, I.; Sugimoto, S.; Yoneda, S. Tetrahedron Lett. 1983, 24, 3469.  doi: 10.1016/S0040-4039(00)86015-3

    9. [9]

      Zhao, Y. M.; Chen, G.; Mulla, K.; Mahmud, I.; Liang, S.; Dongare, P.; Thompson, D. W.; Dawe, L. N.; Bouzan, S. Pure Appl. Chem. 2012, 84, 1005.  doi: 10.1351/PAC-CON-11-09-22

    10. [10]

      Liang, S.; Chen, G.; Peddle, J.; Zhao, Y. M. Chem. Commun. 2012, 48, 3100.  doi: 10.1039/c2cc17935k

    11. [11]

      Massue, J.; Bellec, N.; Guerro, M.; Bergamini, J. F.; Hapiot, P.; Lorcy, D. J. Org. Chem. 2007, 72, 4655.  doi: 10.1021/jo0701841

    12. [12]

      Liang, S.; Zhao, Y. M.; Adronov, A. J. Am. Chem. Soc. 2014, 136, 970.  doi: 10.1021/ja409918n

    13. [13]

      Khadem, M.; Zhao, Y. M. J. Org. Chem. 2015, 80, 7419.  doi: 10.1021/acs.joc.5b00792

    14. [14]

      Wu, W. T.; Li, J.; Zhao, Z.; Yang, X. D.; Gao, X. K. Org. Chem. Front. 2017, 4, 823.  doi: 10.1039/C7QO00061H

    15. [15]

      Gontier, E.; Bellec, N.; Brignou, P.; Gohier, A.; Guerro, M.; Roisnel, T.; Lorcy, D. Org. Lett. 2010, 12, 2386.  doi: 10.1021/ol1007422

    16. [16]

      Hu, Y. B.; Wang, Z. L.; Zhang, X.; Yang, X. D.; Ge, C. W.; Fu, L.; Gao, X. K. Org. Lett. 2017, 19, 468.  doi: 10.1021/acs.orglett.6b03614

    17. [17]

      Sen, S.; Hosono, N.; Zheng, J. J.; Kusaka, S.; Matsuda, R.; Sakaki, S.; Kitagawa, S. J. Am. Chem. Soc. 2017, 139, 18313.  doi: 10.1021/jacs.7b10110

    18. [18]

      Lorcy, D.; Carlier, R.; Robert, A.; Tallec, A.; Maguer & s, P. L.; Ouahabo, L. J. Org. Chem. 1995, 60, 2443.  doi: 10.1021/jo00113a026

    19. [19]

      Rathore, R.; Kochi, J. K. Acta Chem. Scand. 1998, 52, 114.  doi: 10.3891/acta.chem.scand.52-0114

    20. [20]

      Zhai, L. Y.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org. Chem. 2010, 75, 4748.  doi: 10.1021/jo100611k

    21. [21]

      Maddala, S.; Mallick, S.; Venkatakrishnan, P. J. Org. Chem. 2017, 82, 8958.  doi: 10.1021/acs.joc.7b01377

    22. [22]

      Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2013, 52, 2.

    23. [23]

      Bouzan, S.; Chen, G.; Mulla, K.; Dawe, L. N.; Zhao, Y. M. Org. Biomol. Chem. 2012, 10, 7673.  doi: 10.1039/c2ob26275d

    24. [24]

      Bouzan, S.; Dawe, L. N.; Zhao, Y. M. Tetrahedron Lett. 2013, 54, 4666.  doi: 10.1016/j.tetlet.2013.06.077

    25. [25]

      Simonsen, K. B.; Svenstrup, N.; Lau, J.; Simonsen, O.; Mørk, P.; Kristensen, G. J.; Becher, J. Synthesis 1996, 407.

    26. [26]

      Chen, G.; Mahmud, I.; Dawe, L. N.; Daniels, L.; Zhao, Y. M. J. Org. Chem. 2011, 76, 2701.  doi: 10.1021/jo2000447

    27. [27]

      Chen, G.; Mahmud, I.; Dawe, L. N.; Daniels, L.; Zhao, Y. M. Org. Lett. 2010, 12, 704.  doi: 10.1021/ol9026683

    28. [28]

      Hapiot, P.; Lorcy, D.; Tallec, A.; Carlier, R.; Robert, A. J. Phys. Chem. 1996, 100, 14823.  doi: 10.1021/jp961048v

    29. [29]

      Carlier, R.; Hapiot, P.; Lorcy, D.; Robert, A.; Tallec, A. Electro-chim. Acta 2001, 46, 3269.  doi: 10.1016/S0013-4686(01)00619-3

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    5. [5]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(5)
  • Abstract views(1339)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return