Citation: Wang Bowen, Liu Yuan, Hao Zhifeng, Hou Jiaqi, Li Jianyi, Li Shuting, Pan Sihui, Zeng Minghao, Wang Zhaoyang. Recent Progress in C-C Bond Construction Based on 2(5H)-Furanone[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1872-1884. doi: 10.6023/cjoc201803053 shu

Recent Progress in C-C Bond Construction Based on 2(5H)-Furanone

  • Corresponding author: Hao Zhifeng, haozhifeng3377@163.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 30 March 2018
    Revised Date: 29 April 2018
    Available Online: 14 August 2018

    Fund Project: Project supported by the Undergraduates Innovation Project of South China Normal University (No. 20181442), the Natural Science Foundation of Guangdong Province (No. 2014A030313429), the Guangzhou Science and Technology Project Scientific Special (No. 201607010251), the Applied Science and Technology Research and Development Special Foundation of Guangdong Province (No. 2016B090930004) and the Guangdong Provincial Science and Technology Project (No. 2017A010103016)the Applied Science and Technology Research and Development Special Foundation of Guangdong Province 2016B090930004the Undergraduates Innovation Project of South China Normal University 20181442the Guangdong Provincial Science and Technology Project 2017A010103016the Natural Science Foundation of Guangdong Province 2014A030313429the Guangzhou Science and Technology Project Scientific Special 201607010251

Figures(14)

  • 2(5H)-Furanone contains several reaction points, and its structure unit exists in a number of nature products, which makes the researches on the derivatizations of 2(5H)-furanone important. Some 2(5H)-furanone compounds, such as 3-(or 4-) halo-2(5H)-furanone, 5-nonsubstitued 2(5H)-furanone, 4-hydroxy-2(5H)-furanone and their derivatives, can react with organometallic reagents, alkyl halides, organoboron compounds, unsaturated hydrocarbons and unsaturated C=X (X=O, N) compounds, forming C-C bond at 3-, or 4-, or 5-position of 2(5H)-furanone, respectively. According to the different types of reagents, the C-C bond formation reactions based on 2(5H)-furanone synthons are reviewed, and their recent progress in organic synthesis methodology and application of bioactive compounds is summarized. In the future, it is important to make the 2(5H)-furanone C-C bond formation reaction more greener and efficiently used in polycyclization reaction.
  • 加载中
    1. [1]

      Ube, H.; Shimada, N.; Terada, M. Angew. Chem., Int. Ed. 2010, 49, 1858.  doi: 10.1002/anie.v49:10

    2. [2]

      Yoritate, M.; Takahashi, Y.; Tajima, H.; Ogihara, C.; Yokoyama, T.; Soda, Y.; Oishi, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2017, 139, 18386.  doi: 10.1021/jacs.7b10944

    3. [3]

      Tao, D. J.; Slutskyy, Y.; Muuronen, M.; Le, A.; Kohler, P.; Overman, L. E. J. Am. Chem. Soc. 2018, 140, 3091.  doi: 10.1021/jacs.7b13799

    4. [4]

      Garnsey, M. R.; Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. J. Org. Chem. 2018, 83, 6958.  doi: 10.1021/acs.joc.7b02458

    5. [5]

      Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477.  doi: 10.1021/ja5092563

    6. [6]

      Qi, W.-Y.; Zhao, J.-X.; Wei, W.-J.; Gao, K.; Yue, J.-M. J. Org. Chem. 2018, 83, 1041.  doi: 10.1021/acs.joc.7b02684

    7. [7]

      Fujita, S.; Nishikawa, K.; Iwata, T.; Tomiyama, T.; Ikenaga, H.; Matsumoto, K.; Shindo, M. Chem.-Eur. J. 2018, 24, 1539.  doi: 10.1002/chem.201706057

    8. [8]

      Thorat, S. S.; Kataria, P.; Kontham, R. Org. Lett. 2018, 20, 872.  doi: 10.1021/acs.orglett.7b04027

    9. [9]

      Wang, Z.-H.; You, Y.; Chen, Y.-Z.; Xu, X.-Y.; Yuan, W.-C. Org. Biomol. Chem. 2018, 16, 1636.  doi: 10.1039/C7OB03117C

    10. [10]

      Zhang, Q.; Liu, X. H.; Feng, X. M. Curr. Org. Synth. 2013, 10, 764.  doi: 10.2174/15701794113109990059

    11. [11]

      Jusseau, X.; Chabaud, L.; Guillou, C. Tetrahedron 2014, 70, 2595.  doi: 10.1016/j.tet.2014.01.057

    12. [12]

      Barbosa, L. C. A.; Teixeira, R. R.; Amarante, G. W. Curr. Org. Synth. 2015, 12, 746.  doi: 10.2174/157017941206150828111855

    13. [13]

      Mao, B.; Fananas-Mastral, M.; Feringa, B. L. Chem. Rev. 2017, 117, 10502.  doi: 10.1021/acs.chemrev.7b00151

    14. [14]

      Yan, L.; Wu, X. H.; Liu, H. J.; Xie, L. Y.; Jiang, Z. Y. Mini-Rev. Med. Chem. 2013, 13, 845.  doi: 10.2174/1389557511313060007

    15. [15]

      Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Curr. Org. Chem. 2017, 21, 964.  doi: 10.2174/1385272821666170111151917

    16. [16]

      Wang, D.-P.; Zhang, X.-D.; Liang, Y.; Li, J.-H. Chin. J. Org. Chem. 2006, 26, 19(in Chinese).  doi: 10.3321/j.issn:0253-2786.2006.01.003
       

    17. [17]

      Mao, C.-X.; Wang, Z.-Y.; Tang, Y.-H.; Xue, F.-L. Chin. J. Org. Chem. 2011, 31, 1377(in Chinese).
       

    18. [18]

      Liu, Q.; Wang, B.; Peng, X. S.; Wong, H. N. C. Chin. J. Org. Chem. 2018, 38, 40(in Chinese).
       

    19. [19]

      Gao, W.; Luo, Y.; Ding, Q. P.; Peng, Y. Y.; Wu, J. Tetrahedron Lett. 2010, 51, 136.  doi: 10.1016/j.tetlet.2009.10.096

    20. [20]

      Miles, W. H.; Connell, K. B.; Ulas, G.; Tuson, H. H.; Dethoff, E. A.; Mehta, V.; Thrall, A. J. J. Org. Chem. 2010, 75, 6820.  doi: 10.1021/jo101155c

    21. [21]

      Ngi, S. I.; Cherry, K.; Heran, V.; Commeiras, L.; Parrain, J.-L.; Duchene, A.; Abarbri, M.; Thibonnet, J. Chem.-Eur. J. 2011, 17, 13692.  doi: 10.1002/chem.v17.49

    22. [22]

      Boukouvalas, J.; Albert, V.; Loach, R. P.; Lafleur-Lambert, R. Tetrahedron 2012, 68, 9592.  doi: 10.1016/j.tet.2012.09.064

    23. [23]

      Barbosa, L. C. A.; Varejao, J. O. S.; Petrollino, D.; Pinheiro, P. F.; Demuner, A. J.; Maltha, C. R. A.; Forlani, G. ARKIVOC 2012, 15.

    24. [24]

      Muddala, R.; Acosta, J. A. M.; Barbosa, L. C. A.; Boukouvalas, J. J. Nat. Prod. 2017, 80, 2166.  doi: 10.1021/acs.jnatprod.7b00405

    25. [25]

      Hashmi, A. S. K.; Ramamurthi, T. D.; Todd, M. H.; Tsang, A. S.-K.; Graf, K. Aust. J. Chem. 2010, 63, 1619.  doi: 10.1071/CH10342

    26. [26]

      Posta, M.; Light, M. E.; Papenfus, H. B.; Van Staden, J.; Kohout, L. J. Plant Physiol. 2013, 170, 1235.  doi: 10.1016/j.jplph.2013.04.002

    27. [27]

      Wang, Y.; Li, Z. L.; Lv, L. B.; Xie, Z. X. Org. Lett. 2016, 18, 792.  doi: 10.1021/acs.orglett.6b00057

    28. [28]

      Cheval, N. P.; Dikova, A.; Blanc, A.; Weibel, J.-M.; Pale, P. Chem.-Eur. J. 2013, 19, 8765.  doi: 10.1002/chem.v19.27

    29. [29]

      Williams, D. R.; Shah, A. A.; Mazumder, S.; Baik, M.-H. Chem. Sci. 2013, 4, 238.  doi: 10.1039/C2SC21404K

    30. [30]

      Klopfleisch, M.; Seidel, R. A.; Gorls, H.; Richter, H.; Beckert, R.; Imhof, W.; Reiher, M.; Pohnert, G.; Westerhausen, M. Org. Lett. 2013, 15, 4608.  doi: 10.1021/ol402221b

    31. [31]

      Vaz, B.; Otero, L.; Alvarez, R.; de Lera, A. R. Chem.-Eur. J. 2013, 19, 13065.  doi: 10.1002/chem.v19.39

    32. [32]

      Garcia-Dominguez, P.; Nevado, C. J. Am. Chem. Soc. 2016, 138, 3266.  doi: 10.1021/jacs.5b10277

    33. [33]

      Hashmi, A. S. K.; Dopp, R.; Lothschutz, C.; Rudolph, M.; Riedel, D.; Rominger, F. Adv. Synth. Catal. 2010, 352, 1307.  doi: 10.1002/adsc.v352:8

    34. [34]

      Hashmi, A. S. K.; Lothschutz, C.; Dopp, R.; Ackermann, M.; Becker, J. D.; Rudolph, M.; Scholz, C.; Rominger, F. Adv. Synth. Catal. 2012, 354, 133.  doi: 10.1002/adsc.201000044

    35. [35]

      Hirner, J. J.; Blum, S. A. Organometallics 2011, 30, 1299.  doi: 10.1021/om200060x

    36. [36]

      Yamashita, S.; Naruko, A.; Nakazawa, Y.; Zhao, L.; Hayashi, Y.; Hirama, M. Angew. Chem., Int. Ed. 2015, 54, 8538.  doi: 10.1002/anie.201503794

    37. [37]

      Koch, V.; Nieger, M.; Brase, S. Adv. Synth. Catal. 2017, 359, 832.  doi: 10.1002/adsc.v359.5

    38. [38]

      Ganiek, M. A.; Becker, M. R.; Ketels, M.; Knochel, P. Org. Lett. 2016, 18, 828.  doi: 10.1021/acs.orglett.6b00086

    39. [39]

      Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.  doi: 10.1021/acs.orglett.7b03513

    40. [40]

      Banwell, M. G.; Jones, M. T.; Loong, D. T. J.; Lupton, D. W.; Pinkerton, D. M.; Ray, J. K.; Willis, A. C. Tetrahedron 2010, 66, 9252.  doi: 10.1016/j.tet.2010.09.042

    41. [41]

      Gowala, T. N.; Pabba, J. Tetrahedron Lett. 2015, 56, 1801.  doi: 10.1016/j.tetlet.2015.02.045

    42. [42]

      Muimhneachain, E. O.; Pardo, L. M.; Bateman, L. M.; Khandavilli, U. B. R.; Lawrence, S. E.; McGlacken, G. P. Adv. Synth. Catal. 2017, 359, 1529.  doi: 10.1002/adsc.v359.9

    43. [43]

      del Villar, I. S.; Gradillas, A.; Dominguez, G.; Perez-Castells, J. Org. Lett. 2010, 12, 2418.  doi: 10.1021/ol100788g

    44. [44]

      Singh, P.; Kumar, A.; Kaur, S.; Kaur, J.; Singh, H. Chem. Commun. 2016, 52, 2936.  doi: 10.1039/C5CC08830E

    45. [45]

      Toum, V.; Kadouri-Puchot, C.; Hamon, L.; Lhommet, G.; Mouries-Mansuy, V.; Vanucci-Bacque, C.; Dechoux, L. Syn-thesis 2011, 2781.

    46. [46]

      Chu, S. Y.; Munster, N.; Balan, T.; Smith, M. D. Angew. Chem., Int. Ed. 2016, 55, 14306.  doi: 10.1002/anie.v55.46

    47. [47]

      Nemecek, G.; Thomas, R.; Goesmann, H.; Feldmann, C.; Podlech, J. Eur. J. Org. Chem. 2013, 6420.

    48. [48]

      Szwalbe, A. J.; Williams, K.; O'Flynn, D. E.; Bailey, A. M.; Mulholland, N. P.; Vincent, J. L.; Willis, C. L.; Cox, R. J.; Simpson, T. J. Chem. Commun. 2015, 51, 17088.  doi: 10.1039/C5CC06988B

    49. [49]

      Ngi, S. I.; Petrignet, J.; Duwald, R.; El Hilali, E. M.; Abarbri, M.; Duchene, A.; Thibonnet, J. Adv. Synth. Catal. 2013, 355, 2936.  doi: 10.1002/adsc.v355.14/15

    50. [50]

      Lei, M.; Gan, X. W.; Zhao, K.; Chen, A. F.; Hu, L. H. Tetra-hedron 2015, 71, 3325.  doi: 10.1016/j.tet.2015.03.106

    51. [51]

      Varejao, J. O. S.; Barbosa, L. C. A.; Maltha, C. R. A.; Lage, M. R.; Lanznaster, M.; Carneiro, J. W. M.; Forlani, G. Electrochim. Acta 2014, 120, 334.  doi: 10.1016/j.electacta.2013.12.053

    52. [52]

      Zhang, R.; Xu, Q.; Chen, K.; Gu, P.; Shi, M. Eur. J. Org. Chem. 2013, 7366.

    53. [53]

      Takahashi, A.; Yanai, H.; Zhang, M.; Sonoda, T.; Mishima, M.; Taguchi, T. J. Org. Chem. 2010, 75, 1259.  doi: 10.1021/jo902641g

    54. [54]

      Kim, H. D.; Kim, G. Tetrahedron Lett. 2013, 54, 1765.  doi: 10.1016/j.tetlet.2013.01.093

    55. [55]

      Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L. Eur. J. Med. Chem. 2014, 82, 127.  doi: 10.1016/j.ejmech.2014.05.035

    56. [56]

      Karak, M.; Barbosa, L. C. A.; Maltha, C. R. A.; Silva, T. M.; Boukouvalas, J. Tetrahedron Lett. 2017, 58, 2830.  doi: 10.1016/j.tetlet.2017.06.016

    57. [57]

      Pereira, U. A.; Barbosa, L. C. A.; Demuner, A. J.; Silva, A. A.; Bertazzini, M.; Forlani, G. Chem. Biodiversity 2015, 12, 987.  doi: 10.1002/cbdv.v12.7

    58. [58]

      Varejao, J. O. S.; Barbosa, L. C. A.; Ramos, G. A.; Varejao, E. V. V.; King-Diaz, B.; Lotina-Hennsen, B. J. Photochem. Photobiol., B 2015, 145, 11.  doi: 10.1016/j.jphotobiol.2015.02.016

    59. [59]

      Zhang, R. N.; Iskander, G.; da Silva, P.; Chan, D.; Vignevich, V.; Nguyen, V.; Bhadbhade, M. M.; Black, D. S.; Kumar, N. Tetrahedron 2011, 67, 3010.  doi: 10.1016/j.tet.2011.02.014

    60. [60]

      Mizuta, S.; Otaki, H.; Kitamura, K.; Nishi, K.; Watanabe, K.; Makau, J. N.; Hashimoto, R.; Usui, T.; Chiba, K. Org. Chem. Front. 2016, 3, 1661.  doi: 10.1039/C6QO00360E

    61. [61]

      Parker, A. N.; Lock, M. J.; Hutchison, J. M. Tetrahedron Lett. 2013, 54, 5322.  doi: 10.1016/j.tetlet.2013.07.101

    62. [62]

      Vasamsetty, L.; Khan, F. A.; Mehta, G. Tetrahedron 2015, 71, 3209.  doi: 10.1016/j.tet.2015.04.009

    63. [63]

      Zhu, H.-T.; Wang, L.-J.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. Chem.-Asian J. 2012, 7, 1862.  doi: 10.1002/asia.v7.8

    64. [64]

      Giera, D. S.; Stark, C. B. W. RSC Adv. 2013, 3, 21280.  doi: 10.1039/C3RA44590A

    65. [65]

      Yugandhar, D.; Nayak, V. L.; Archana, S.; Shekar, K. C.; Srivastava, A. K. Eur. J. Med. Chem. 2015, 101, 348.  doi: 10.1016/j.ejmech.2015.06.050

    66. [66]

      Archana, S.; Geesala, R.; Rao, N. B.; Satpati, S.; Puroshottam, G.; Panasa, A.; Dixit, A.; Das, A.; Srivastava, A. K. Bioorg. Med. Chem. Lett. 2015, 25, 680.  doi: 10.1016/j.bmcl.2014.11.077

    67. [67]

      Nallasivam, J. L.; Fernandes, R. A. Eur. J. Org. Chem. 2015, 2012.

    68. [68]

      Nallasivam, J. L.; Fernandes, R. A. Eur. J. Org. Chem. 2015, 3558.

    69. [69]

      Nallasivam, J. L.; Fernandes, R. A. Org. Biomol. Chem. 2017, 15, 708.  doi: 10.1039/C6OB02398C

    70. [70]

      Lv, B.; Fu, C. L.; Ma, S. M. Chem.-Eur. J. 2010, 16, 6434.  doi: 10.1002/chem.201000169

    71. [71]

      Biswas, K.; Gholap, R.; Srinivas, P.; Kanyal, S.; Das Sarma, K. RSC Adv. 2014, 4, 2538.  doi: 10.1039/C3RA42201A

    72. [72]

      Karak, M.; Acosta, J. A. M.; Barbosa, L. C. A.; Boukouvalas, J. Eur. J. Org. Chem. 2016, 3780.

    73. [73]

      Hu, Y.; Ding, Q. P.; Ye, S. Q.; Peng, Y. Y.; Wu, J. Tetrahedron 2011, 67, 7258.  doi: 10.1016/j.tet.2011.07.048

    74. [74]

      Xing, C.-H.; Lee, J.-R.; Tang, Z.-Y.; Zheng, J. R.; Hu, Q.-S. Adv. Synth. Catal. 2011, 353, 2051.  doi: 10.1002/adsc.v353.11/12

    75. [75]

      Kote, S. R.; Dhage, G. R.; Thopate, S. R.; Mishra, R.; Khan, A. A. Synthesis 2015, 47, 2603.  doi: 10.1055/s-00000084

    76. [76]

      Boukouvalas, J.; McCann, L. C. Tetrahedron Lett. 2010, 51, 4636.  doi: 10.1016/j.tetlet.2010.06.129

    77. [77]

      Dikova, A.; Cheval, N. P.; Blanc, A.; Weibel, J.-M.; Pale, P. Adv. Synth. Catal. 2015, 357, 4093.  doi: 10.1002/adsc.201500682

    78. [78]

      Zhu, S. G.; Wu, L. L.; Huang, X. RSC Adv. 2012, 2, 132.  doi: 10.1039/C1RA00452B

    79. [79]

      Chopin, N.; Yanai, H.; Iikawa, S.; Pilet, G.; Bouillon, J.-P.; Medebielle, M. Eur. J. Org. Chem. 2015, 6259.

    80. [80]

      Boukouvalas, J.; Bruneau-Latour, N. Synlett 2013, 24, 2691.  doi: 10.1055/s-00000083

    81. [81]

      Li, J.-X.; Xue, F.-L.; Tan, Y.-H.; Luo, S.-H.; Wang, Z.-Y. Acta Chim. Sinica 2011, 69, 1688(in Chinese).

    82. [82]

      Li, J.-X.; Wang, Z.-Y.; Xue, F.-L.; Luo, S.-H. Acta Chim. Sinica 2011, 69, 2835(in Chinese).

    83. [83]

      Jin, S. F.; Jiang, C. G.; Peng, X. S.; Shan, C. H.; Cui, S. S.; Niu, Y. Y.; Liu, Y.; Lan, Y.; Liu, Y. X.; Cheng, M. S. Org. Lett. 2016, 18, 680.  doi: 10.1021/acs.orglett.5b03641

    84. [84]

      Mao, Z.-Z.; Wang, Z.-Y.; Li, J.-N.; Song, X.-M.; Luo, Y.-F. Synth. Commun. 2010, 40, 1963.  doi: 10.1080/00397910903219328

    85. [85]

      Yang, K.; Wang, Z.-Y.; Fu, J.-H.; Tan, Y.-H. Prog. Chem. 2010, 22, 2126(in Chinese).

    86. [86]

      Jin, S. F.; Niu, Y. J.; Liu, C. J.; Zhu, L. F.; Li, Y. M.; Cui, S. S.; Xiong, Z. L.; Cheng, M. S.; Lin, B.; Liu, Y. X. J. Org. Chem. 2017, 82, 9066.  doi: 10.1021/acs.joc.7b01561

    87. [87]

      Huang, X.; Sha, F.; Tong, J. W. Adv. Synth. Catal. 2010, 352, 379.  doi: 10.1002/adsc.v352:2/3

    88. [88]

      Zheng, C. G.; Yao, W. J.; Zhang, Y. C.; Ma, C. Org. Lett. 2014, 16, 5028.  doi: 10.1021/ol502365r

    89. [89]

      Rodier, F.; Parrain, J.-L.; Chouraqui, G.; Commeiras, L. Org. Biomol. Chem. 2013, 11, 4178.  doi: 10.1039/c3ob40363g

    90. [90]

      Cannillo, A.; Schwantje, T. R.; Begin, M.; Barabe, F.; Barriault, L. Org. Lett. 2016, 18, 2592.  doi: 10.1021/acs.orglett.6b00968

    91. [91]

      Pepper, H. P.; Lam, H. C.; George, J. H. Org. Biomol. Chem. 2017, 15, 4811.  doi: 10.1039/C7OB00868F

    92. [92]

      Lam, H. C.; Pepper, H. P.; Sumby, C. J.; George, J. H. Angew. Chem., Int. Ed. 2017, 56, 8532.  doi: 10.1002/anie.201700114

    93. [93]

      Zhang, Y. N.; Yu, C. G.; Ji, Y. F.; Wang, W. Chem.-Asian J. 2010, 5, 1303.

    94. [94]

      Huang, H. C.; Yu, F.; Jin, Z. C.; Li, W. J.; Wu, W. B.; Liang, X. M.; Ye, J. X. Chem. Commun. 2010, 46, 5957.  doi: 10.1039/c0cc01054e

    95. [95]

      Xu, Z.-J.; Wu, Y.-K. Chem.-Eur. J. 2017, 23, 2026.  doi: 10.1002/chem.201605776

    96. [96]

      Wang, J. F.; Qi, C.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Chem. Commun. 2010, 46, 2124.  doi: 10.1039/b923925a

    97. [97]

      Yin, L.; Takada, H.; Lin, S. Q.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2014, 53, 5327.  doi: 10.1002/anie.v53.21

    98. [98]

      Zhang, M.; Kumagai, N.; Shibasaki, M. Chem.-Eur. J. 2016, 22, 5525.  doi: 10.1002/chem.201600740

    99. [99]

      Cui, L.-Y.; Wang, Y.-H.; Chen, S.-R.; Wang, Y.-M.; Zhou, Z.-H. RSC Adv. 2015, 5, 88133.  doi: 10.1039/C5RA17503H

    100. [100]

      Terada, M.; Ando, K. Org. Lett. 2011, 13, 2026.  doi: 10.1021/ol200415u

    101. [101]

      Khan, M. A. S.; Zhang, J.; Das Sarma, K.; Ganguly, B. RSC Adv. 2012, 2, 8460.  doi: 10.1039/c2ra21203j

    102. [102]

      Liu, G.-Y.; Guo, B.-Q.; Chen, W.-N.; Cheng, C.; Zhang, Q.-L.; Dai, M.-B.; Sun, J.-R.; Sun, P.-H.; Chen, W.-M. Chem. Biol. Drug Des. 2012, 79, 628.  doi: 10.1111/jpp.2012.79.issue-5

    103. [103]

      Mirabdolbaghi, R.; Hassan, M.; Dudding, T. Tetrahedron:Asymmetry 2015, 26, 560.  doi: 10.1016/j.tetasy.2015.04.001

    104. [104]

      Pansare, S. V.; Paul, E. K. Synthesis 2013, 45, 1863.  doi: 10.1055/s-00000084

    105. [105]

      Claraz, A.; Oudeyer, S.; Levacher, V. Adv. Synth. Catal. 2013, 355, 841.  doi: 10.1002/adsc.201201041

    106. [106]

      Sakai, T.; Hirashima, S.; Yamashita, Y.; Arai, R.; Nakashima, K.; Yoshida, A.; Koseki, Y.; Miura, T. J. Org. Chem. 2017, 82, 4661.  doi: 10.1021/acs.joc.7b00287

    107. [107]

      Karak, M.; Acosta, J. A. M.; Barbosa, L. C. A.; Sarotti, A. M.; da Silva, C. C.; Boukouvalas, J.; Martins, F. T. Cryst. Growth Des. 2016, 16, 5798.  doi: 10.1021/acs.cgd.6b00881

    108. [108]

      Karak, M.; Barbosa, L. C. A.; Acosta, J. A. M.; Sarotti, A. M.; Boukouvalas, J. Org. Biomol. Chem. 2016, 14, 4897.  doi: 10.1039/C6OB00895J

    109. [109]

      Huang, P.-Q.; Huang, S.-Y.; Gao, L.-H.; Mao, Z.-Y.; Chang, Z.; Wang, A.-E. Chem. Commun. 2015, 51, 4576.  doi: 10.1039/C4CC09598G

    110. [110]

      Xu, H.-W.; Xu, C.; Fan, Z.-Q.; Zhao, L.-J.; Liu, H.-M. Bioorg. Med. Chem. Lett. 2013, 23, 737.  doi: 10.1016/j.bmcl.2012.11.090

    111. [111]

      Dubois, S.; Rodier, F.; Blanc, R.; Rahmani, R.; Heran, V.; Thibonnet, J.; Commeiras, L.; Parrain, J.-L. Org. Biomol. Chem. 2012, 10, 4712.  doi: 10.1039/c2ob25299f

    112. [112]

      Yu, B.; Zhang, E.; Fang, Y.; Sun, X.-N.; Ren, J.-L.; Yu, D.-Q.; Liu, H.-M. Heterocycles 2013, 87, 163.  doi: 10.3987/COM-12-12611

    113. [113]

      Varejao, J. O. S.; Barbosa, L. C. A.; Varejao, E. V. V.; Maltha, C. R. A.; King-Diaz, B.; Lotina-Hennsen, B. J. Agric. Food Chem. 2014, 62, 5772.  doi: 10.1021/jf5014605

    114. [114]

      Thombal, R. S.; Jadhav, V. H. Org. Biomol. Chem. 2015, 13, 9485.  doi: 10.1039/C5OB01276G

    115. [115]

      Alves, S. L. G.; Paixao, N.; Ferreira, L. G. R.; Santos, F. R. S.; Neves, L. D. R.; Oliveira, G. C.; Cortes, V. F.; Salome, K. S.; Barison, A.; Santos, F. V.; Cenzi, G.; Varotti, F. P.; Oliveira, S. M. F.; Taranto, A. G.; Comar, M.; Silva, L. M.; Noel, F.; Quintas, L. E. M.; Barbosa, L. A.; Villar, J. A. F. P. Bioorg. Med. Chem. 2015, 23, 4397.  doi: 10.1016/j.bmc.2015.06.028

    116. [116]

      Barbosa, L. C. A.; Maltha, C. R. A.; Lage, M. R.; Barcelos, R. C.; Dona, A.; Carneiro, J. W. M.; Forlani, G. J. Agric. Food Chem. 2012, 60, 10555.  doi: 10.1021/jf302921n

    117. [117]

      Ramachary, D. B.; Kishor, M. Org. Biomol. Chem. 2010, 8, 2859.  doi: 10.1039/c003588b

    118. [118]

      Ma, Z.-X.; Patel, A.; Houk, K. N.; Hsung, R. P. Org. Lett. 2015, 17, 2138.  doi: 10.1021/acs.orglett.5b00727

    119. [119]

      Arakawa, K.; Tsuda, N.; Taniguchi, A.; Kinashi, H. ChemBioChem 2012, 13, 1447.  doi: 10.1002/cbic.v13.10

    120. [120]

      Burghart-Stoll, H.; Bruckner, R. Eur. J. Org. Chem. 2012, 3978.

    121. [121]

      Sreedharan, D. T.; Clive, D. L. J. Org. Biomol. Chem. 2013, 11, 3128.  doi: 10.1039/c3ob40115d

    122. [122]

      Sousa, B. A.; Keppler, A. F.; Gariani, R. A.; Comasseto, J. V.; Dos Santos, A. A. Tetrahedron 2012, 68, 10406.  doi: 10.1016/j.tet.2012.09.027

    123. [123]

      Shen, Y.; Li, L. B.; Pan, Z. S.; Wang, Y. L.; Li, J. D.; Wang, K. Y.; Wang, X. C.; Zhang, Y. Y.; Hu, T. H.; Zhang, Y. D. Org. Lett. 2015, 17, 5480.  doi: 10.1021/acs.orglett.5b02845

    124. [124]

      Paterson, I.; Xuan, M. Y.; Dalby, S. M. Angew. Chem., Int. Ed. 2014, 53, 7286.  doi: 10.1002/anie.201404224

    125. [125]

      Hou, W.; Wang, Z.-Y.; Peng, C.-K.; Lin, J.; Liu, X.; Chang, Y.-Q.; Xu, J.; Jiang, R.-W.; Lin, H.; Sun, P.-H.; Chen, W.-M. Eur. J. Med. Chem. 2016, 122, 149.  doi: 10.1016/j.ejmech.2016.06.021

    126. [126]

      Hayat, F.; Park, S.-H.; Choi, N.-S.; Lee, J.; Park, S. J.; Shin, D. Arch. Pharmacal Res. 2015, 38, 1975.  doi: 10.1007/s12272-015-0619-2

    127. [127]

      Gu, X. X.; Georg, G. I. Tetrahedron Lett. 2015, 56, 5874.  doi: 10.1016/j.tetlet.2015.09.004

    128. [128]

      Jeedimalla, N.; Johns, J.; Roche, S. P. Tetrahedron Lett. 2013, 54, 5845.  doi: 10.1016/j.tetlet.2013.08.071

    129. [129]

      Zhang, M.-M.; Chen, D.-S.; Wang, X.-S. Res. Chem. Intermed. 2015, 41, 6339.  doi: 10.1007/s11164-014-1743-1

    130. [130]

      Liu, G.-Z.; Xu, H.-W.; Wang, P.; Lin, Z.-T.; Duan, Y.-C.; Zheng, J.-X.; Liu, H.-M. Eur. J. Med. Chem. 2013, 65, 323.  doi: 10.1016/j.ejmech.2013.04.062

    131. [131]

      Luo, J.; Wang, H. F.; Han, X.; Xu, L.-W.; Kwiatkowski, J.; Huang, K.-W.; Lu, Y. X. Angew. Chem. 2011, 123, 1901.  doi: 10.1002/ange.v123.8

    132. [132]

      Zhong, Z. L.; Zhao, G. Y.; Xu, D. Y.; Dong, B. B.; Song, D. P.; Xie, X. G.; She, X. G. Chem.-Asian J. 2016, 11, 1542.  doi: 10.1002/asia.201600398

    133. [133]

      Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahremanzadeh, R. New J. Chem. 2014, 38, 348.  doi: 10.1039/C3NJ00940H

    134. [134]

      Wang, S. L.; Cheng, C.; Gong, F.; Wu, F. Y.; Jiang, B.; Zhou, J. F.; Tu, S. J. Chin. J. Chem. 2011, 29, 2101.  doi: 10.1002/cjoc.v29.10

    135. [135]

      Cheng, C.; Jiang, B.; Tu, S.-J.; Li, G. G. Green Chem. 2011, 13, 2107.  doi: 10.1039/c1gc15183e

    136. [136]

      Ghahremanzadeh, R.; Rashid, Z.; Zarnani, A. H.; Naeimi, H. Appl. Catal., A 2013, 467, 270.  doi: 10.1016/j.apcata.2013.07.029

    137. [137]

      Zhang, M.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. Catal. Commun. 2017, 88, 39.  doi: 10.1016/j.catcom.2016.09.028

    138. [138]

      Tatton, M. R.; Simpson, I.; Donohoe, T. J. Chem. Commun. 2014, 50, 11314.  doi: 10.1039/C4CC05209A

    139. [139]

      Zhou, L.; Lin, L. L.; Ji, J.; Xie, M. S.; Liu, X. H.; Feng, X. M. Org. Lett. 2011, 13, 3056.  doi: 10.1021/ol200939t

    140. [140]

      Nakamura, S.; Yamaji, R.; Hayashi, M. Chem.-Eur. J. 2015, 21, 9615.  doi: 10.1002/chem.201500599

    141. [141]

      Guo, Y. L.; Zhang, Y.; Qi, L. W.; Tian, F.; Wang, L. X. RSC Adv. 2014, 4, 27286.  doi: 10.1039/c4ra04824e

    142. [142]

      Guo, Y.-L.; Bai, J.-F.; Peng, L.; Wang, L.-L.; Jia, L.-N.; Luo, X.-Y.; Tian, F.; Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2012, 77, 8338.  doi: 10.1021/jo301115t

    143. [143]

      Yin, L.; Takada, H.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2013, 52, 7310.  doi: 10.1002/anie.201303119

    144. [144]

      Trost, B. M.; Gnanamani, E.; Tracy, J. S.; Kalnmals, C. A. J. Am. Chem. Soc. 2017, 139, 18198.  doi: 10.1021/jacs.7b11361

    145. [145]

      Zhou, L.-J.; Zhang, Y.-C.; Jiang, F.; He, G.-F.; Yan, J.-J.; Lu, H.; Zhang, S.; Shi, F. Adv. Synth. Catal. 2016, 358, 3069.  doi: 10.1002/adsc.v358.19

    146. [146]

      Yin, D. W.; Wang, W.; Peng, Y. Q.; Ge, Z. M.; Cheng, T. M.; Wang, X.; Li, R. T. RSC Adv. 2015, 5, 17296.  doi: 10.1039/C4RA13796E

    147. [147]

      Patil, D. V.; Yun, H.; Shin, S. Adv. Synth. Catal. 2015, 357, 2622.  doi: 10.1002/adsc.201500525

    148. [148]

      Xu, M.-M.; Wang, H.-Q.; Wan, Y.; He, G.-F.; Yan, J.-J.; Zhang, S.; Wang, S.-L.; Shi, F. Org. Chem. Front. 2017, 4, 358.  doi: 10.1039/C6QO00549G

    149. [149]

      Rouleau, J.; Korovitch, A.; Lion, C.; Hemadi, M.; Ha-Duong, N.-T.; Chahine, J.-M. E. H.; Le Gall, T. Tetrahedron 2013, 69, 10842.  doi: 10.1016/j.tet.2013.10.087

    150. [150]

      Ghobril, C.; Kister, J.; Baati, R. Eur. J. Org. Chem. 2011, 3416.

    151. [151]

      Dzhemilev, U. M.; D'yakonov, V. A.; Tuktarova, R. A.; Dzhemileva, L. U.; Ishmukhametova, S. R.; Yunusbaeva, M. M.; de Meijere, A. J. Nat. Prod. 2016, 79, 2039.  doi: 10.1021/acs.jnatprod.6b00335

    152. [152]

      Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.  doi: 10.1038/nature22307

    153. [153]

      Cao, L.; Luo, S.-H.; Wu, H.-Q.; Chen, L.-Q.; Jiang, K.; Hao, Z.-F.; Wang, Z.-Y. Adv. Synth. Catal. 2017, 359, 2961.  doi: 10.1002/adsc.v359.17

    154. [154]

      Shi, J.; Tang, X.-D.; Wu, Y.-C.; Fang, J.-F.; Cao, L.; Chen, X.-Y.; Wang, Z.-Y. RSC Adv. 2016, 6, 25651.  doi: 10.1039/C6RA01393G

    155. [155]

      Shi, J.; Tang, X.-D.; Wu, Y.-C.; Li, H.-N.; Song, L.-J.; Wang, Z.-Y. Eur. J. Org. Chem. 2015, 1193.

    156. [156]

      Cao, L.; Li, J.-X.; Wu, H.-Q.; Jiang, K.; Hao, Z.-F.; Luo, S.-H.; Wang, Z.-Y. ACS Sustainable Chem. Eng. 2018, 6, 4147.  doi: 10.1021/acssuschemeng.7b04564

    157. [157]

      Kang, H. X.; Bai, J.; Xi, Z. T.; Zhang, M. M.; Fu, Y. Q.; Zou, D. P. Chin. J. Org. Chem. 2016, 36, 1915(in Chinese).
       

    158. [158]

      Wu, Y.-C.; Luo, S.-H.; Mei, W.-J.; Cao, L.; Wu, H.-Q.; Wang, Z.-Y. Eur. J. Med. Chem. 2017, 139, 84.  doi: 10.1016/j.ejmech.2017.08.005

    159. [159]

      Song, X.-M.; Xue, F.-L.; Feng, Z.-C.; Wang, Y.; Wang, Z.-Y.; Xi, Y.-L. Aust. J. Chem. 2017, 70, 837.  doi: 10.1071/CH16616

    160. [160]

      Xin, Y. C.; Rodriguez-Santiago, L.; Sodupe, M.; Alvarez-Larena, A.; Busque, F.; Alibes, R. J. Org. Chem. 2018, 83, 3188.  doi: 10.1021/acs.joc.8b00088

    161. [161]

      Zhou, M. B.; Song, R. J.; Li, J. H. Angew. Chem., Int. Ed. 2014, 53, 4196.  doi: 10.1002/anie.201310944

    162. [162]

      Ouyang, X. H.; Song, R. J.; Hu, M.; Yang, Y.; Li, J. H. Angew. Chem., Int. Ed. 2016, 55, 3187.  doi: 10.1002/anie.201511624

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(15)
  • Abstract views(2445)
  • HTML views(493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return