Citation: Chen Donghan, Yang Wen, Yao Yongqi, Yang Xin, Deng Yingying, Yang Dingqiao. Recent Advances in Transition Metal-Promoted Trifluoromethylation Reactions[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2571-2589. doi: 10.6023/cjoc201803045 shu

Recent Advances in Transition Metal-Promoted Trifluoromethylation Reactions

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 27 March 2018
    Revised Date: 15 May 2018
    Available Online: 5 October 2018

    Fund Project: the Natural Science Foundation of Guangdong Province S2013020013091Project supported by the National Natural Science Foundation of China (Nos. 21172081, 21372090), the Natural Science Foundation of Guangdong Province (No. S2013020013091) and the City of Guangzhou Science and Technology Plan Projects (No. 201510010054)the City of Guangzhou Science and Technology Plan Projects 201510010054the National Natural Science Foundation of China 21172081the National Natural Science Foundation of China 21372090

Figures(18)

  • Recently, transition metal-promoted trifluoromethylation has been developed rapidly. Starting with the types of transition metal that promote the trifluoromethylation reactions, the research progress of trifluoromethylation promoted by silver, iron, palladium, nickel, rhodium and cobalt in recent years is reviewed. Moreover, the possible mechanisms of some parts of reactions are also discussed.
  • 加载中
    1. [1]

      (a) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
      (b) Kirsch, P. ; Bremer, M. Angew. Chem. , Int. Ed. 2000, 39, 4216.

    2. [2]

      Wong, D.-T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. Drug. Discovery 2005, 4, 764.  doi: 10.1038/nrd1821

    3. [3]

      Margot, P.; Huggenberger, F.; Amrein, J.; Weiss, B. BCPC Conf.-Pests Dis. 1998, 2, 375.

    4. [4]

      Reiffenrath, V.; Krause, J.; Plach, H. J.; Weber, G. Liq. Cryst. 1989, 5, 159.  doi: 10.1080/02678298908026359

    5. [5]

      (a) Swarts, F. Bull. Acad. R. Belg. 1892, 24, 309.
      (b) Boswell, G. A., Jr. ; Ripka, W. C. ; Scribner, R. M. ; Tullock, C. W. Org. React. 1974, 21, 1.

    6. [6]

      Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.  doi: 10.1038/nature10108

    7. [7]

      Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322.  doi: 10.1002/anie.201004051

    8. [8]

      Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.  doi: 10.1021/cr1004293

    9. [9]

      Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V. D. Tetrahedron Lett. 2011, 67, 2161.  doi: 10.1016/j.tet.2011.01.002

    10. [10]

      Wang, G.-Z.; He, X.-P.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2014, 34, 837(in Chinese).
       

    11. [11]

      Lü, C.-P.; Shen, Q.-L.; Liu, D. Chin. J. Org. Chem. 2012, 32, 1380(in Chinese).
       

    12. [12]

      Qi, Z.-S.; Dong, Y.-L.; Li, Y.-M.; Duan, C.-Y. Prog. Chem. 2012, 24, 2178(in Chinese).

    13. [13]

      Pan, F.; Shi, Z.-J. Acta Chim. Sinica 2012, 70, 1679(in Chinese).

    14. [14]

      Ye, Y.-D.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.  doi: 10.1021/ol202174a

    15. [15]

      Han, J.-B.; Xu, B.; Hammond, G. B. Org. Lett. 2011, 13, 3450.  doi: 10.1021/ol2011902

    16. [16]

      Hafner, A.; Br se, S. Angew. Chem., Int. Ed. 2012, 51, 3713.  doi: 10.1002/anie.v51.15

    17. [17]

      Wang, X.; Xu, Y.; Zhou, Y.-J.; Zhang, Y.; Wang, J.-B. Synthesis 2014, 46, 2143.  doi: 10.1055/s-00000084

    18. [18]

      Wu, X.-Y.; Chu, L.-L.; Qing, F.-L. Angew. Chem., Int. Ed. 2013, 52, 2198.  doi: 10.1002/anie.201208971

    19. [19]

      Wang, K.-P.; Yun, S.-Y.; Mamidipalli, P.; Lee, D. Chem. Sci. 2013, 4, 3205.  doi: 10.1039/c3sc50992c

    20. [20]

      Zeng, Y.-W.; Zhang, L.-J.; Zhao, Y.-C.; Ni, C.-F.; Zhao, J.-W.; Hu, J.-B. J. Am. Chem. Soc. 2013, 135, 2955.  doi: 10.1021/ja312711c

    21. [21]

      Liu, Q.-L.; Wu, Y.-C.; Chen, P.-H.; Liu, G.-S. Org. Lett. 2013, 15, 6210.  doi: 10.1021/ol403059z

    22. [22]

      Wang, X.-B.; Qiu, G.-Y.-S.; Zhang, L.; Wu, J. Tetrahedron Lett. 2014, 55, 962.  doi: 10.1016/j.tetlet.2013.12.064

    23. [23]

      Yu, W.; Xu, X-H.; Qing, F-L. Adv. Synth. Catal. 2015, 357, 2039.  doi: 10.1002/adsc.v357.9

    24. [24]

      SeO, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013, 49, 6385.  doi: 10.1039/c3cc41829d

    25. [25]

      Teng, F.; Cheng, J.; Bolm, C. Org. Lett. 2015, 17, 3166.  doi: 10.1021/acs.orglett.5b01537

    26. [26]

      Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.  doi: 10.1021/acs.orglett.5b02522

    27. [27]

      Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 11839.  doi: 10.1002/anie.201506329

    28. [28]

      Wu, Y.-B.; Lu, G.-P.; Yuan, T.; Xu, Z.-B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668.  doi: 10.1039/C6CC08178A

    29. [29]

      Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 9747.  doi: 10.1002/anie.201303576

    30. [30]

      Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan, J.-W.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Lett. 2014, 16, 204.  doi: 10.1021/ol403196h

    31. [31]

      Liu, J.-D.; Zhuang, S.-B.; Gui, Q.-W.; Chen, X.; Yang, Z.-Y.; Tan, Z. Eur. J. Org. Chem. 2014, 3196.

    32. [32]

      Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.  doi: 10.1021/ol502071g

    33. [33]

      Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. J. Org. Chem. 2015, 80, 1332.  doi: 10.1021/jo502928e

    34. [34]

      Huang, P.; Li, Y.-M.; Fu, X.-M.; Zhang, R.; Jin, K.; Wang, W.-X.; Duan, C.-Y. Tetrahedron Lett. 2016, 57, 4705.  doi: 10.1016/j.tetlet.2016.09.016

    35. [35]

      Liu, Y.-R.; Tu, H.-Y.; Zhang, X.-G. Synthesis 2015, 47, 3460.  doi: 10.1055/s-00000084

    36. [36]

      Shi, G.-F.; Shao, C.-D.; Pan, S.-L.; Yu, J.-X.; Zhang, Y.-H. Org. Lett. 2015, 17, 38.  doi: 10.1021/ol503189j

    37. [37]

      Zhang, X.-M.; Wang, J.; Wan, Z.-H. Org. Lett. 2015, 17, 2086.  doi: 10.1021/acs.orglett.5b00619

    38. [38]

      Zhou, M.; Ni, C.-F.; He, Z.-B.; Hu, J.-B. Org. Lett. 2016, 18, 3754.  doi: 10.1021/acs.orglett.6b01779

    39. [39]

      Tan, X.-Q.; Liu, Z.-L.; Shen, H.-G.; Zhang, P.; Zhang, Z.-Z.; Li, C.-Z. J. Am. Chem. Soc. 2017, 139, 12430.  doi: 10.1021/jacs.7b07944

    40. [40]

      Uraguchi, D.; Yamamoto, K.; Ohtsuka, Y.; Tokuhisa, K.; Yamakawa, T. Appl. Catal., A 2008, 342, 137.  doi: 10.1016/j.apcata.2008.03.009

    41. [41]

      Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.  doi: 10.1016/j.jfluchem.2009.09.007

    42. [42]

      Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2016, 181, 1.  doi: 10.1016/j.jfluchem.2015.10.013

    43. [43]

      Parsons, A. T.; Senecal, T. D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 2947.  doi: 10.1002/anie.201108267

    44. [44]

      Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.  doi: 10.1039/c3cc43936d

    45. [45]

      Yu, L.-Z.; Xu, Q.; Tang, X.-Y.; Shi, M. ACS Catal. 2016, 6, 526.  doi: 10.1021/acscatal.5b02400

    46. [46]

      Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.; Gillaizeau, I. Chem.-Eur. J. 2015, 21, 3572.  doi: 10.1002/chem.v21.9

    47. [47]

      Ma, J.-J.; Yi, W.-B.; Lu, G.-P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447.  doi: 10.1002/adsc.201500631

    48. [48]

      Li, Z.-R.; Bao, X.-X.; Sun, J.; Shen, J.; Wu, D.-Q.; Liu, Y.-K.; Deng, Q.-H.; Liu, F. Org. Chem. Front. 2016, 3, 934.  doi: 10.1039/C6QO00166A

    49. [49]

      Patra, T.; Deb, A.; Manna, S.; Sharma, U.; Maiti, D. Eur. J. Org. Chem. 2013, 2013, 5247.

    50. [50]

      Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.  doi: 10.1002/cjoc.201500641

    51. [51]

      Klein, J. E. M. N.; Rommel, S.; Plietker, B. Organometallics 2014, 33, 5802.  doi: 10.1021/om5005012

    52. [52]

      Exner, B.; Bayarmagnai, B.; Jia, F.; Goossen, L. J. Chem.-Eur. J. 2015, 21, 17220.  doi: 10.1002/chem.201503915

    53. [53]

      Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.  doi: 10.1021/om049726k

    54. [54]

      Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 4632.  doi: 10.1021/ja0602389

    55. [55]

      Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878.  doi: 10.1021/ja100955x

    56. [56]

      Cho, E. J.; Buchwald, S. L. Org. Lett. 2011, 13, 6552.  doi: 10.1021/ol202885w

    57. [57]

      Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G.-S. J. Am. Chem. Soc. 2012, 134, 878.  doi: 10.1021/ja210614y

    58. [58]

      Mu, X.; Chen, S.-J.; Zhen, X.-L.; Liu, G.-S. Chem.-Eur. J. 2011, 17, 6039.  doi: 10.1002/chem.v17.22

    59. [59]

      Samant, B. S.; Kabalka, G. W. Chem. Commun. 2011, 47, 7236.  doi: 10.1039/c1cc12098k

    60. [60]

      Yu, Y.-Y.; Ranade, A. R.; Georg, G. I. Adv. Synth. Catal. 2014, 356, 3510.  doi: 10.1002/adsc.v356.17

    61. [61]

      Wang, X.-S.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.  doi: 10.1021/ja909522s

    62. [62]

      Zhang, L.-S.; Chen, K.; Chen, G.-H.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org. Lett. 2013, 15, 10.  doi: 10.1021/ol302814x

    63. [63]

      Zhang, X.-G.; Dai, H.-X.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948.  doi: 10.1021/ja305259n

    64. [64]

      Miura, M.; Feng, C.-G.; Ma, S.; Yu, J.-Q. Org. Lett. 2013, 15, 5258.  doi: 10.1021/ol402471y

    65. [65]

      Liu, C.; Chen, Q.-Y. Eur. J. Org. Chem. 2005, 3680

    66. [66]

      Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.  doi: 10.1126/science.1190524

    67. [67]

      Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.-B.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782.  doi: 10.1002/anie.201511131

    68. [68]

      Li, Z.-D.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610.  doi: 10.1021/jacs.5b07432

    69. [69]

      Yu, J.-P.; Yang, H.-J.; Fu, H. Adv. Synth. Catal. 2014, 356, 3669.  doi: 10.1002/adsc.v356.17

    70. [70]

      Xu, J.; Qiao, L.; Shen, J.-B.; Chai, K.-J.; Shen, C.; Zhang, P.-F. Org. Lett. 2017, 19, 5661.  doi: 10.1021/acs.orglett.7b02823

    71. [71]

      Wu, Y.; Zhang, H.-R.; Jin, R.-X.; Lan, Q.; Wang, X.-S. Adv. Synth. Catal. 2016, 358, 3528.  doi: 10.1002/adsc.v358.22

    72. [72]

      Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. Org. Lett. 2004, 6, 4359.  doi: 10.1021/ol048134v

    73. [73]

      Sato, K.; Yuki, T.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Tetrahedron Lett. 2008, 49, 3558.  doi: 10.1016/j.tetlet.2008.04.030

    74. [74]

      Yuan, W.-M.; Eriksson, L.; Szabó, K. J. Angew. Chem., Int. Ed. 2016, 55, 8410.  doi: 10.1002/anie.201602137

    75. [75]

      Liu, Y.-F.; Shao, X.-X.; Zhang, P.-P.; Lu, L.; Shen, Q.-L. Org. Lett. 2015, 17, 2752.  doi: 10.1021/acs.orglett.5b01170

    76. [76]

      Zhang, H.-Y.; Ge, C.; Zhao, J.-Q.; Zhang, Y.-C. Org. Lett. 2017, 19, 5260.  doi: 10.1021/acs.orglett.7b02353

    77. [77]

      Hossain, M. J.; Ono, T.; Wakiya, K.; Hisaeda, Y. Chem. Commun. 2017, 53, 10878.  doi: 10.1039/C7CC06221D

    78. [78]

      Weng, Z.-Q.; Lee, R.; Jia, W.-G.; Yuan, Y.-F.; Wang, W.-F.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.  doi: 10.1021/om200204y

    79. [79]

      Xu, J.; Xiao, B.; Xie, C.-Q, Luo, D.-F.; Liu, L.; Fu, Y. Angew. Chem., Int. Ed. 2012, 51, 12551.  doi: 10.1002/anie.201206681

    80. [80]

      Yin, J.; Li, Y.-M.; Zhang, R.; Jin, K.; Duan, C.-Y. Synthesis 2014, 46, 607.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    10. [10]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    11. [11]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

Metrics
  • PDF Downloads(150)
  • Abstract views(8574)
  • HTML views(1957)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return