Citation: Wang Tieshi, Chen Jianjun, Ye Lin, Zhang Aiying, Feng Zengguo. Synthesis of Titanium Heteroarylphosphinimine Complexes and Application for Ethylene Polymerization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2151-2160. doi: 10.6023/cjoc201803035 shu

Synthesis of Titanium Heteroarylphosphinimine Complexes and Application for Ethylene Polymerization

  • Corresponding author: Feng Zengguo, sainfeng@bit.edu.cn
  • Received Date: 23 March 2018
    Revised Date: 25 April 2018
    Available Online: 3 August 2018

    Fund Project: Project supported by the Technology Development Project of China Petroleum & Chemical Corporation (Sinopec) (No. 214002)the Technology Development Project of China Petroleum & Chemical Corporation (Sinopec) 214002

Figures(5)

  • Mono-and bisdiphenyl substituted heteroarylphosphines R-PPh2[R=2-pyridyl (3a), 2-thienyl (3b) and 2-furyl (3c)] and Ph2P-R'-PPh2[R'=2, 6-pyridyl (6a), 2, 5-thienyl (6b) and 2, 5-furyl (6c)] were synthesized. After Staudinger reaction with Me3SiN3, those heteroarylphosphines were converted into the heteroarylphosphinimine ligands, R-PPh2(NSiMe3) and (Me3SiN)Ph2P-R"-PPh2(NSiMe3). The subsequently dehalosilylation reaction with CpTiCl3 afforded the corresponding Ti heteroarylphosphinimine halfmetallocenes as olefin polymerization catalysts. The structures of all the complexes were determined by means of 1H NMR, 13C NMR and 31P NMR spectroscopic methods and further confirmed by single-crystal X-ray diffraction analysis. When activated with methylaluminoxane (MAO) at a ratio of Al/Ti=600 and under 0.5 MPa of ethylene, these bimetallic Ti phosphinimine complexes displayed a higher catalytic activity compared to the monometallic analogues, but resulted in polymers with bimodal molecular weight distributions. Unexpectedly, 6b produced ultrahigh Mw polyethylene at lower polymerization temperature.
  • 加载中
    1. [1]

      (a) Gan, W. ; Nie, W. L. ; Chen, Y. F. Chin. J. Org. Chem. 2009, 29, 1200 (in Chinese).
      (甘伟, 聂万丽, 陈耀峰, 有机化学, 2009, 29, 1200. )
      (b) Xu, S. S. ; Wang, B. Q. ; Yuan, F. ; He, S. S. ; Zhou, X. Z. ; Zou, F. L. ; Li, Y. Chin. J. Org. Chem. 2003, 23, 187 (in Chinese).
      (徐善生, 王佰全, 袁方, 贺双胜, 周秀中, 邹丰楼, 李杨, 有机化学, 2003, 23, 187. )
      (c) Resconi, L. ; Cavallo, L. ; Fait, A. ; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
      (d) Hessen, B. J. Catal. 2004, 213, 129.

    2. [2]

      (a) Kang, X. H. ; Zhou, G. L. ; Wang, X. B. ; Qu, J. P. ; Hou, Z. M. ; Luo, Y. Organometallics 2016, 35, 913.
      (b) Valente, A. ; Mortreux, A. ; Visseaux, M. ; Zinck, P. Chem. Rev. 2013, 113, 3836.
      (c) Resconi, L. ; Balboni, D. ; Baruzzi, G. ; Fiori, C. ; Guidotti, S. Organometallics 2000, 19, 420.
      (d) Talja, M. ; Polamo, M. ; Leskela, M. J. Catal. 2008, 280, 102.

    3. [3]

      (a) Nikitin, S. V. ; Nikitin, V. V. ; Oleynik, I. I. ; Oleynik, I. V. ; Bagryanskaya, E. G. J. Catal. 2016, 423, 285.
      (b) Srijumnong, S. ; Suttipitakwong, P. ; Jongsomjit, B. ; Praserthdam, P. J. Catal. 2008, 294, 1.
      (c) Wang, Y. X. ; Zuo, M. H. ; Li, Y. S. Chin. J. Catal. 2015, 36, 657.
      (d) Yan, Q. ; Yang, W. H. ; Chen, L. Q. ; Wang, L. ; Redshaw, C. ; Sun, W. H. J. Organomet. Chem. 2014, 753, 34.
      (e) Nomura, K. ; Pengoubol, S. ; Apisuk, W. RSC Adv. 2016, 6, 16203.

    4. [4]

      (a) Hu, W. Q. ; Sun, X. L. ; Wang, C. ; Gao, Y. ; Tang, Y. ; Shi, L. P. ; Xia, W. ; Sun, J. ; Dai, H. L. ; Li, X. Q. ; Yao, X. L. ; Wang, X. R. Organometallics 2004, 23, 1684.
      (b) Qi, C. H. ; Zhang, S. B. Appl. Organomet. Chem. 2006, 20, 70.
      (c) Liu, K. ; Wu, Q. ; Gao, W. ; Mu Y. ; Ye, L. Eur. J. Inorg. Chem. 2011, 12, 1901.
      (d) Nomura, K. ; Liu, J. Dalton Trans. 2011, 7666.

    5. [5]

      (a) Liu, Q. Y. ; Gao, R. ; Hou, J. X. ; Sun, W. H. Chin. J. Org. Chem. 2013, 33, 808 (in Chinese).
      (刘清云, 高榕, 侯俊先, 孙文华, 有机化学, 2013, 33, 808. )
      (b) Yan, Q. ; Yang, W. H. ; Chen, L. Q. ; Wang, L. ; Redshaw, C. ; Sun, W. H. J. Organomet. Chem. 2014, 753, 34.
      (c) Su, B. Y. ; Jia, P. Y. ; Wang, Y. Z. ; Li, Y. N. ; Huang, H. ; Li, Q. D. Chin. J. Org. Chem. 2016, 36, 2344 (in Chinese).
      (苏碧云, 郏佩瑜, 王彦昭, 李亚宁, 黄鹤, 李谦定, 有机化学, 2016, 36, 2344. )
      (d) Stephan, D. W. ; Stewart, J. C. ; Guérin, F. ; Spence, R. E. v. H. ; Xu, W. ; Harrison, D. G. Organometallics 1999, 18, 1116.

    6. [6]

      (a) Stephan, D. W. Organometallics 2005, 24, 2548.
      (b) Dehnicke, K. ; Krieger, M. ; Massa, W. Coord. Chem. Rev. 1999, 182, 19.
      (c) Chen, J. J. ; Wang, T. S. ; Tang, Z. W. ; Xu, Y. B. ; Xu, l. ; Cao, M. S. ; Feng, Z, G. Acta Polym. Sin. 2017, (8), 1294 (in Chinese).
      (陈建军, 王铁石, 唐正伟, 徐一兵, 徐林, 曹茂盛, 冯增国, 高分子学报, 2017, (8), 1294. )

    7. [7]

      (a) Hollink, E. ; Stewart, J. C. ; Wei, P. R. ; Stephan, D. W. Can. J. Chem. 2004, 82, 1304.
      (b) Siemeling, U. ; Kö lling, L. ; Stammler, A. ; Stammler, H-G. J. Chem. Soc., Dalton Trans. 2002, 3277.
      (c) Sarsfield, M. J. ; Said, M. ; Thornton-Pett, M. ; Gerrard, L. A. ; Bochmann, M. J. Chem. Soc., Dalton Trans. 2001, 822.
      (c) Wang, T. S. ; Chen, J. J. ; Ye, L. ; Zhang, A. Y. ; Feng, Z, G. Chin. J. Org. Chem. 2018, 38, 1544 (in Chinese).
      (王铁石, 陈建军, 叶霖, 张爱英, 冯增国, 有机化学, 2018, 38, 1544. )

    8. [8]

      (a) Xu, S. ; Feng, Z. F. ; Huang, J. L. J. Catal. 2006, 250, 35.
      (b) Resconi, L. ; Balboni, D. ; Baruzzi, G. ; Fiori, C. ; Guidotti, S. Organometallics 2000, 19, 420.
      (c) Zhang, Q. ; Tao, X. ; Gao, W. ; Song, T. T. ; Mu, Y. J. Org. Chem. 2016, 804, 18.

    9. [9]

      (a) Xu, S. ; Liang, C. C. ; Lv, Z. W. ; Zhu, Y. L. ; Zhang, C. ; Mi, P. K. Chin. J. Org. Chem. 2017, 37, 1284 (in Chinese).
      (许胜, 梁春超, 吕中文, 朱玉玲, 张翠, 米普科, 有机化学, 2017, 37, 1284. )
      (b) Ewen, J. A. ; Elder, M. J. ; Jones, R. L. ; Rheingold, A. L. ; Liable-Sands, L. M. ; Sommer, R. D. J. Am. Chem. Soc. 2001, 123, 4763.
      (c) Yamazaki, H. ; Kimura, K. ; Nakano, M. ; Ushioda, T. Chem. Lett. 1999, 1311.
      (d) Williams, L. A. ; Marks, T. J. Organometallics 2009, 28, 2053.

    10. [10]

      (a) Li, H. ; Stern, C. L. ; Marks, T. J. Macromolecules 2005, 38, 9015.
      (b) Haak, R. M. ; Wezenberg, S. J. ; Kleij, A. W. Chem. Commun. 2010, 46, 2713.
      (c) Delferro, M. ; Marks, T. J. Chem. Rev. 2011, 111, 2450.
      (d) Li, H. ; Marks, T. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15295.
      (e) Liu, S. ; Motta, A. ; Delferro, M. ; Marks, T. J. J. Am. Chem. Soc. 2013, 135, 8830.

    11. [11]

      McInnis, J. P.; Delferro, M.; Marks, T. J. Acc. Chem. Res. 2014, 47, 2545.  doi: 10.1021/ar5001633

    12. [12]

      (a) Guo, N. ; Li, L. T. ; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542.
      (b) Li, H. ; Li, L. ; Marks, T. J. ; Liable-Sands, L. ; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10788.
      (c) Motta, A. ; Fragala, I. L. ; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 3974.
      (d) Li, H. ; Li, L. ; Marks, T. J. Angew. Chem., Int. Ed. 2004, 43, 4937.
      (e) Li, L. ; Metz, M. V. ; Li, H. ; Chen, M. -C. ; Marks, T. J. ; Liable-Sands, L. ; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12725.

    13. [13]

      (a) Chahma, M. ; Myles, D. J. T. ; Hicks, R. G. Can. J. Chem. 2005, 83, 150.
      (b) Stott, T. L. ; Wolf, M. O. J. Phys. Chem. B 2004, 108, 18815.
      (c) Reiter, S. A. ; Nogai, S. D. ; Schmidbaur, H. Dalton Trans. 2005, 247.
      (d) Sevcik, R. ; Necas, M. ; Novosad, Polyhedron 2003, 22, 1585.

    14. [14]

      Latham, I. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1986, 377.

    15. [15]

      Stephan, D. W.; Stewart, J. C.; Guérin, F.; Courtenay, S.; Kickham, J. E.; Hollink, E.; Beddie, C.; Hoskin, A. J.; Graham, T.; Wei, P.; Spence, R. E. v. H.; Xu, W.; Koch, L.; Gao, X.; Harrison, D. G. Organometallics 2003, 22, 1937.  doi: 10.1021/om020954t

    16. [16]

      (a) Resconi, L. ; Cavallo, L. ; Fait, A. ; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
      (b) Jin, Y. L. ; Zhao, N. ; Cheng, R. H. ; Liu, B. P. CIESC J. 2017, 68, 485 (in Chinese).
      (金玉龙, 赵柠, 程瑞华, 刘柏平, 化工学报, 2017, 68, 485. )

    17. [17]

      Chen J. X.; Huang Y. B.; Li Z. S.; Zhang Z. C.; Wei C. X.; Lan T. Y.; Zhang W. J. J. Mol. Catal. A: Chem. 2006, 259, 133.  doi: 10.1016/j.molcata.2006.06.016

    18. [18]

      Xiao X. H.; Sun J. Q.; Li X.; Wang Y. G.; Schumann H. Eur. Polym. J. 2007, 43, 164.  doi: 10.1016/j.molcata.2006.06.016

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    3. [3]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    4. [4]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    5. [5]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    6. [6]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    7. [7]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    8. [8]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    9. [9]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    10. [10]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    11. [11]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    12. [12]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    13. [13]

      Feng ShiGuiling LiHaibing ZhuLing LiMing ChenJuan LiHuifang ShenHao ZengLingfeng MinZhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333

    14. [14]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    15. [15]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    16. [16]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    17. [17]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    18. [18]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    19. [19]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    20. [20]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

Metrics
  • PDF Downloads(5)
  • Abstract views(1123)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return