Citation: Xia Qi, Chen Zikang, Zhang Zhide, Liu Ruiyuan. Synthesis and Live Cell Imaging of Tetraphenylethene-Based Fluorescent Nanoprobes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2700-2705. doi: 10.6023/cjoc201803029 shu

Synthesis and Live Cell Imaging of Tetraphenylethene-Based Fluorescent Nanoprobes

  • Corresponding author: Liu Ruiyuan, ruiyliu@smu.edu.cn
  • Received Date: 19 March 2018
    Revised Date: 18 May 2018
    Available Online: 5 October 2018

    Fund Project: the National Natural Science Foundation of China 81671749Project supported by the National Natural Science Foundation of China (No. 81671749)

Figures(7)

  • In recent years, designing and synthesizing fluorescent nanoprobes with good biocompatibility, stable optical properties and low cytotoxicity are research hotspots in the biomedical field. The novel tetraphenylethene-based fluorescent probe (TPE-Rho) was synthesized by reaction of 1, 1, 2-triphenyl-2-(4-formylphenyl)ethene with 2-(4-oxo-3-phenyl-1, 3-thia-zol-2-ylidene)malononitrile. After the aggregation-induced emission (AIE) characteristics of TPE-Rho were investigated, TPE-Rho dots with uniform particle size distribution were obtained through a modified nanoprecipitation method by using Pluronic F-127 (amphiphilic surfactant) as the encapsulation. TPE-Rho dots have excellent optical property such as strong yellow fluorescence, good stability and long Stokes shift (ca. 200 nm), and have little effect on cell growth activity. Then, TPE-Rho dots were utilized to stain live SK-Hep1 cells and LoVo cells, the staining region and fluorescent intensity were analyzed. The experimental results show that TPE-Rho dots have no significant effect on cell viability, and can stain live cells and selectively act on the cytoplasm. Thus, it can be confirmed that TPE-Rho dots has good biocompatibility, low cytotoxicity, high cell membrane permeability, and good stability, therefore it can be used as a viable cell staining agent.
  • 加载中
    1. [1]

      Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Nanoscale 2016, 8, 2471.  doi: 10.1039/C5NR05051K

    2. [2]

      Su, S.; Ma, Y.; Tian, L.; Wang, Z. Sci. Sin. Chim. 2017, 47, 1075(in Chinese)

    3. [3]

      Chen, X.; Ko, S. K.; Kim, M. J.; Shin, I.; Yoon, J. Chem. Commun. 2010, 46, 2751.  doi: 10.1039/b925453f

    4. [4]

      Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46, 1462.  doi: 10.1021/ar300273v

    5. [5]

      Gao, M.; Hu, Q.; Feng, G.; Tang, B. Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/C4TB00345D

    6. [6]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    7. [7]

      Ma, X.; Sun, R.; Cheng, J.; Liu, J.; Gou, F.; Xiang, H.; Zhou, X. J. Chem. Educ. 2015, 93, 345.

    8. [8]

      Shi, C.; Guo, Z.; Yan, Y.; Zhu, S.; Xie, Y.; Zhao, Y. S.; Zhu, W.; Tian, H. ACS Appl. Mater. Interfaces 2013, 5, 192.  doi: 10.1021/am302466m

    9. [9]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, 1740.

    10. [10]

      Shi, H.; Kwok, R. T.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B. J. Am. Chem. Soc. 2012, 134, 17972.  doi: 10.1021/ja3064588

    11. [11]

      Zhan, C.; You, X.; Zhang, G.; Zhang, D. Chem. Rec. 2016, 16, 2142.  doi: 10.1002/tcr.v16.4

    12. [12]

      Liang, J.; Kwok, R. T.; Shi, H.; Tang, B. Z.; Liu, B. ACS Appl. Mater. Interfaces 2013, 5, 8784.  doi: 10.1021/am4026517

    13. [13]

      Chatterjee, A.; Khandare, D. G.; Saini, P.; Chattopadhyay, A.; Majik, M. S.; Banerjee, M. RSC Adv. 2015, 5, 31479.  doi: 10.1039/C4RA14765K

    14. [14]

      Chen, Q.; Bian, N.; Cao, C.; Qiu, X. L.; Qi, A. D.; Han, B. H. Chem. Commun. 2010, 46, 4067.  doi: 10.1039/c002894k

    15. [15]

      Li, P. F.; Liu, Y. Y.; Zhang, W. J.; Zhao, N. ChemistrySelect 2017, 2, 3788.  doi: 10.1002/slct.201700302

    16. [16]

      Wu, J.; Sun, S.; Feng, X.; Shi, J.; Hu, X. Y.; Wang, L. Chem. Commun. 2014, 50, 9122.  doi: 10.1039/C4CC03127J

    17. [17]

      Dong, Y.; Lam, J. W. Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B. Z.; Sun, J.; Kwok, H. S. Appl. Phys. Lett. 2007, 91, 1404.

    18. [18]

      Hu, R.; Lager, E.; Aguilaraguilar, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Pe acabrera, E. J. Phys. Chem. C 2009, 113, 15845.  doi: 10.1021/jp902962h

    19. [19]

      Cai, Y.; Li, L.; Wang, Z.; Sun, J. Z.; Qin, A.; Tang, B. Z. Chem. Commun. 2014, 50, 8892.  doi: 10.1039/C4CC02844A

    20. [20]

      Huang, Y.; Lei, L.; Zheng, C.; Wei, B.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 885(in Chinese).

    21. [21]

      Lou, X.; Zhuang, Y.; Zuo, X.; Jia, Y.; Hong, Y.; Min, X.; Zhang, Z.; Xu, X.; Liu, N.; Xia, F.; Tang, B. Z. Anal. Chem. 2015, 87, 6822.  doi: 10.1021/acs.analchem.5b01099

    22. [22]

      Zhuang, Y.; Huang, F.; Xu, Q.; Zhang, M.; Lou, X.; Xia, F. Anal. Chem. 2016, 88, 3289.  doi: 10.1021/acs.analchem.5b04756

    23. [23]

      Ji, G.; Yan, L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. Acta Chim. Sinica 2016, 74, 917(in Chinese).

    24. [24]

      Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. J. Am. Chem. Soc. 2013, 135, 62.  doi: 10.1021/ja310324q

    25. [25]

      Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Yang, H.; Zhang, D. Anal. Chem. 2014, 86, 7987.  doi: 10.1021/ac502103t

    26. [26]

      Xiong, L.; Guo, Y.; Zhang, Y.; Cao, F. J. Mater. Chem. B 2015, 4, 202.

    27. [27]

      Wu, W. C.; Chen, C. Y.; Tian, Y.; Jang, S. H.; Hong, Y.; Liu, Y.; Hu, R.; Tang, B. Z.; Lee, Y. T.; Chen, C. T. Adv. Funct. Mater. 2010, 20, 1413.  doi: 10.1002/adfm.200902043

    28. [28]

      Zhang, X.; Liu, M.; Yang, B.; Zhang, X.; Chi, Z.; Liu, S.; Xu, J.; Wei, Y. Polym. Chem. 2013, 4, 5060.  doi: 10.1039/c3py00860f

    29. [29]

      Zhang, X.; Liu, M.; Yang, B.; Zhang, X.; Wei, Y. Colloids Surf., B 2013, 112, 81.  doi: 10.1016/j.colsurfb.2013.07.052

    30. [30]

      Zhang, F.; Di, Y.; Li, Y.; Qi, Q.; Qian, J.; Fu, X.; Xu, B.; Tian, W. Dyes Pigm. 2017, 142, 491.  doi: 10.1016/j.dyepig.2017.04.004

    31. [31]

      Zhang, J.; Li, C.; Zhang, X.; Huo, S.; Jin, S.; An, F. F.; Wang, X.; Xue, X.; Okeke, C. I.; Duan, G.; Guo, F.; Zhang, X.; Hao, J.; Wang, P. C.; Zhang, J.; Liang, X. J. Biomaterials 2015, 42, 103.  doi: 10.1016/j.biomaterials.2014.11.053

    32. [32]

      An, F.-F.; Yang, Y.-L.; Liu, J.; Ye, J.; Zhang, J.-F.; Zhou, M.-J.; Zhang, X.-J.; Zheng, C.-J.; Liang, X.-J.; Zhang, X.-H. RSC Adv. 2014, 4, 6120.  doi: 10.1039/c3ra47058j

    33. [33]

      Liu, J.; Li, K.; Liu, B. Adv. Sci. (Weineim, Ger.) 2015, 2, 1500008.

    34. [34]

      Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1998, 79, 1086.

    35. [35]

      Yuan, F.; Li, S.; Fan, Z.; Meng, X.; Fan, L.; Yang, S. Nano Today 2016, 11, 565.  doi: 10.1016/j.nantod.2016.08.006

    36. [36]

      Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. Asian J. 2013, 8, 858.  doi: 10.1002/asia.v8.5

    37. [37]

      Niu, X.; Chen, H.; Wang, Y.; Wang, W.; Sun, X.; Chen, L. ACS Appl. Mater. Interfaces 2014, 6, 5152.  doi: 10.1021/am500411m

    38. [38]

      Leung, C. W. T.; Yuning, H.; Sijie, C.; Engui, Z.; Lam, J. W. Y.; Ben Zhong, T. J. Am. Chem. Soc. 2013, 135, 62.  doi: 10.1021/ja310324q

    39. [39]

      Reddy, E. R.; Yellanki, S.; Medishetty, R.; Konada, L.; Alamuru, N. P.; Haldar, D.; Parsa, K. V. L.; Kulkarni, P.; Rajadurai, M. ChemNanoMat 2016, 1, 567.

    40. [40]

      Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Tao, L.; Wei, Y. Nanoscale 2013, 5, 147.  doi: 10.1039/C2NR32698A

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    6. [6]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    7. [7]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    11. [11]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    18. [18]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    19. [19]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(9)
  • Abstract views(1339)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return