Citation: Liu Boqu, Yan Zhongfei, Quan Zhengjun. Palladium/Copper(I) Acetate-Promoted Desulfurative Coupling of Pyrimidine Thioether with Alkynes or Arylboronic Acids[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 3032-3038. doi: 10.6023/cjoc201803025 shu

Palladium/Copper(I) Acetate-Promoted Desulfurative Coupling of Pyrimidine Thioether with Alkynes or Arylboronic Acids

  • Corresponding author: Quan Zhengjun, quanzj@nwnu.edu.cn
  • Received Date: 17 March 2018
    Revised Date: 10 May 2018
    Available Online: 16 November 2018

    Fund Project: Project supported by the Scientific and Technological Innovation Engineering Program of Northwest Normal University (No. NWNU-LKQN-15-1)the Scientific and Technological Innovation Engineering Program of Northwest Normal University NWNU-LKQN-15-1

Figures(2)

  • An efficient method for carbon-carbon bond formation via desulfurative coupling of pyrimidine thioethers/4-phenylquinoline thioethers with alkynes or arylboronic acids is described. The reaction was promoted by a cheap and stable copper salt[copper(I) acetate] and catalyzed by palladium with good yields and wild substrate scope.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (b) Liu, H.; Jiang, X. Chem.-Asian J. 2013, 8, 2546.
      (c) Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674.
      (d) De Ornellas, S.; Storr, T. E.; Williams, T. J.; Baumann, C. G.; Fairlamb, I. J. S. Curr. Org. Synth. 2011, 8, 79.
      (e) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
      (f) Modha, S. G.; Mehta, P.; der Eycken, V, E. V. Chem. Soc. Rev. 2013, 42, 5042.
      (g) Pan, F.; Shi, Z.-J. ACS Catal. 2014, 4, 280.

    2. [2]

      Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.  doi: 10.1021/ja005613q

    3. [3]

      For examples of Liebeskind-Srogl reactions, see: (a) Liebeskind, L. S.; Yang, H.; Li, H. Angew. Chem., Int. Ed. 2009, 48, 1417.
      (b) Zhang, Z.; Lindale, M. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 6403.
      (c) Lengar, A.; Kappe, C. O. Org. Lett. 2004, 6, 771.
      (d) Prokopcová, H.; Kappe, C. O. Adv. Synth. Catal. 2007, 349, 448.
      (e) Kappe, C. O. J. Org. Chem. 2007, 72, 4440.
      (f) Maltsev, O. V.; Pöthig, A.; Hintermann, L. Org. Lett. 2014, 16, 1282.
      (g) Prokopcová, H.; Kappe, C. O. Angew. Chem., Int. Ed. 2008, 47, 3674.
      (h) Prokopcová, H.; Kappe, C. O. Angew. Chem., Int. Ed., 2009, 48, 2276.
      (i) Dong, Y.; Wang, M.; Liu, J.; Ma, W.; Liu, Q. Chem. Commun. 2011, 47, 73802.

    4. [4]

      Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734.  doi: 10.1021/ja074931n

    5. [5]

      Creech, G. S.; Kwon, O. Chem. Sci. 2013, 4, 2670.  doi: 10.1039/c3sc50773d

    6. [6]

      (a) Hooper, J. F.; Pernik, R. D.; Young, I.; Weller, A. S.; Willis, M. C. Chem. Sci. 2013, 4, 1568.
      (b) Pan, F.; Wang, H.; Shen, P.-X.; Zhao, J.; Shi, Z.-J. Chem. Sci. 2013, 4, 1573.

    7. [7]

      (a) Otsuka, S.; Fujino, D.; Murakami, K.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J. 2014, 20, 13146.
      (b) Baralle, A.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J. 2016, 22, 10768.

    8. [8]

      (a) Quan, Z.-J.; Lv, Y.; Jing, F.-Q.; Jia, X.-D.; Huo, C.-D.; Wang, X.-C. Adv. Synth. Catal. 2014, 356, 325.
      (b) Du, B.-X.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z.; Wang, X.-C. Adv. Synth. Catal. 2015, 357, 1270.
      (c) Yang, Q.; Quan, Z.; Du, B.; Wu, S.; Li, P.; Sun, Y.; Lei, Z.; Wang, X. Catal. Sci. Technol. 2015, 5, 4522.

    9. [9]

      (a) Quan, Z.-J.; Jing, F.-Q.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Eur. J. Org. Chem. 2013, 2013, 7175.
      (b) Xing, T.; Zhang Z.; Da, Y.-X.; Quan, Z.-J.; Wang, X.-C. Tetrahedron Lett. 2015, 56, 6495.
      (c) Xing, T.; Zhang, Z.; Da, Y.-X.; Quan, Z.-J.; Wang, X.-C. Asian J. Org. Chem. 2015, 4, 538.
      (d) Yang, Q.; Quan, Z.-J; Wu, S.; Du, B.; Wang, M.; Li, P.; Zhang, Y.; Wang, X. Tetrahedron 2015, 71, 6124.
      (e) Yang, Q.-L. Quan, Z.-J.; Du, B.-X.; Wu, S.; Zhang, Y.-P.; Li, P.-D.; Wang, M.-M.; Lei, Z.-Q.; Wang, X.-C. RSC Adv. 2015, 5, 59770.

    10. [10]

      Deres, K.; Schrçder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Kraemer, T.; Niewoehner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R. N. A.; Reimann, A.; Jaeger, R.; Grob, R.; Beckermann, B.; Schlemmer, K.-H.; Haebich, D.; Ribsamen-Waigmann, H. Science 2003, 299, 893.  doi: 10.1126/science.1077215

    11. [11]

      Gholap, A. R.; Toti, K. S.; Shirazi, F.; Deshpande, M. V.; Srinivasan, K. V. Tetrahedron 2008, 64, 10214.  doi: 10.1016/j.tet.2008.08.033

    12. [12]

      Kim, H.; Phan, N. H. T.; Shin H.; Lee, H.-S.; Sohn, J.-H. Tetrahedron 2017, 73, 6604.  doi: 10.1016/j.tet.2017.10.010

    13. [13]

      (a) Alhaider, A. A.; Abdelkader, M. A.; Lien, E. J. J. Med. Chem. 1985, 28, 1394.
      (b) Labaudiniere, R.; Hendel, W.; Terlain, B.; Cavy, F.; Marquis, O.; Dereu, N. J. Med. Chem. 1992, 35, 4306.

    14. [14]

      Zhang, X.; Xu, X.; Yu, L.; Zhao, Q. Asian J. Org. Chem. 2014, 3, 281.  doi: 10.1002/ajoc.v3.3

    15. [15]

      Wang, T.-L.; Liu, X.-J.; Huo, C.-D.; Wang, X.-C.; Quan, Z.-J. Chem. Commun. 2018, 54, 499.  doi: 10.1039/C7CC07633A

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

Metrics
  • PDF Downloads(5)
  • Abstract views(1240)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return