Citation: Zhao Mingjing, Mao Guoliang, Liu Yang, Xiao Jie, Deng Liang. Synthesis, Structure, and Nitrene-Transfer Reactivity of High-Spin Iron(Ⅱ) Complex Featuring Iminoarsorane Ligation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1656-1662. doi: 10.6023/cjoc201803015 shu

Synthesis, Structure, and Nitrene-Transfer Reactivity of High-Spin Iron(Ⅱ) Complex Featuring Iminoarsorane Ligation

  • Corresponding author: Mao Guoliang, maoguoliang@nepu.edu.cn Deng Liang, deng@sioc.ac.cn
  • Received Date: 12 March 2018
    Revised Date: 4 April 2018
    Available Online: 13 July 2018

    Fund Project: the National Natural Science Foundation of China 51534004the National Natural Science Foundation of China 21725104the National Natural Science Foundation of China 21690062Project supported by the National Key Research and Development Program of the Ministry of Science and Technology (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 51534004, 21725104, 21690062, 21432001, U1362110) and the CAS Strategic Pilot Science and Technology Special (No. XDB20000000)the CAS Strategic Pilot Science and Technology Special XDB20000000the National Natural Science Foundation of China U1362110the National Natural Science Foundation of China 21432001the National Key Research and Development Program of the Ministry of Science and Technology 2016YFA0202900

Figures(6)

  • Treatment of (2, 6-F2C6H3)(2-BrC6H4)NH with 2 equiv. of nBuLi, followed by the interaction with 0.5 equiv. of PhAsCl2 and quenching with aqueous solution, afforded the new bis(amido)-arsorane ligand ((o-(N-(2, 6-2C6H3)NH)C6H4)2AsPh (denoted as H2(dfpN2As)). The interaction of H2(dfpN2As)) with 0.5 equiv. of[Fe(N(TMS)2)2]2 resulted in amine elimination and gave the bis(amido)-arsorene-iron(Ⅱ) complex[(κ-N, N, P-dfpN2As)Fe(THF)2] (3). Further treatment of 3 with the organic azide DippN3 rendered the formation of the first iminoarsorane-transition-metal complex[(κ-N, N, N-dfpN2AsNDipp)Fe(THF)] (4) as an air- and moisture-sensitive green solid. Reactivity study indicated that 4 can undergo nitrene-transfer reactions with excess amounts of 2, 6-dimethylphenylisocyanide and PPh3 to produce the nitrene-transfer products DippNCNC6H3Me2-2, 6 and Ph3PCNC6H3Me2-2, 6, respectively and the corresponding bis(amido)-arsorane-iron(Ⅱ) complexes[(κ-N, N, As-dfpN2As)Fe(CNC6H3Me2-2, 6)3] (5) and[(κ-N, N, As-dfpN2As)Fe(PPh3)] (6). These complexes were fully characterized by various spectroscopic methods. Solution magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy (δ=0.88 mm/s, |ΔEQ|=1.50 mm/s; δ=0.90 mm/s, |ΔEQ|=2.53 mm/s; and δ=0.65 mm/s, |ΔEQ|=2.23 mm/s for 3, 4, and 6, respectively) indicated that 3, 4 and 6 are high-spin iron(Ⅱ) complexes, whereas the well-resolved diamagnetic NMR spectra of 5 in combination with its 57Fe Mössbauer spectrum data (δ=0.05 mm/s, |ΔEQ|=0.40 mm/s) revealed its low-spin iron(Ⅱ) nature. The molecular structures of 3~5 have been characterized by single-crystal X-ray diffraction studies. The dianionic bis(amido)-arsorane ligands in 3 and 5 chelate to the metal centers in a fac-fashion with the Fe-As distances being 0.2562(3) and 0.2293(1) nm, respectively. The dianionic bis(amido)-iminoarsorane ligand in 4 binds to the iron(Ⅱ) center in a fac-fashion. The Fe-As distance (0.285 nm) observed in 4 is longer than the sum of the covalent radii of Fe and As, indicating the absence of strong Fe-As interaction in the iminoarsorane-iron(Ⅱ) complex. Its As-N distance of 0.1752(3) nm is found comparable to those of the As-N bonds in the reported iminoarsoranes and bis(arsoranylidene) ammonium compounds.
  • 加载中
    1. [1]

      Patai, S. The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds, Wiley, Chichester, U. K., 1994.

    2. [2]

      García-Álvarez, J.; García-Garrido, S. E.; Cadierno, V. J. Organomet. Chem. 2014, 751, 792.  doi: 10.1016/j.jorganchem.2013.07.009

    3. [3]

      Roesky, H. W.; Witt, M.; Clegg, W.; Isenberg, W.; Noltemeyer, M.; Sheldric, G. M. Angew. Chem., Int. Ed. Engl. 1980, 19, 943.

    4. [4]

      Matano, Y.; Nomura, H.; Suzuki, H.; Shiro, M.; Nakano, H. J. Am. Chem. Soc. 2001, 123, 10954.  doi: 10.1021/ja003623l

    5. [5]

      Matano, Y.; Nomura, H.; Suzuki, H. Inorg. Chem. 2002, 41, 1940.  doi: 10.1021/ic0110575

    6. [6]

      Nitta, M.; Mitsumoto, Y.; Yamamoto, H. J. Chem. Soc., Perkin Trans. 1 2001, 1901.

    7. [7]

      Xiao, J.; Deng, L. Dalton Trans. 2013, 42, 5607.  doi: 10.1039/c3dt50518a

    8. [8]

      Liu, J.; Hu, L.; Wang, L.; Chen, H.; Deng, L. J. Am. Chem. Soc. 2017, 139, 3876.  doi: 10.1021/jacs.7b00484

    9. [9]

      Howell, J. A. S.; Palin, M. G.; McArdle, P.; Cunningham, D.; Goldschmidt, Z.; Gottlieb, H. E.; Hezroni-Langerman, D. Inorg. Chem. 1993, 32, 3493.  doi: 10.1021/ic00068a019

    10. [10]

      Song, L. C.; Hu, Q. M.; Zhou, Z. Y.; Hu, G. Z.; Xiang, Z. Y. Chin. J. Inorg. Chem. 1991, 7, 399 (in Chinese).
       

    11. [11]

      El-khateeb, M.; Al-Noaimi, M.; Al-Akhras, A.; Görls, H.; Weigan, W. J. Coord. Chem. 2012, 65, 2510.  doi: 10.1080/00958972.2012.698406

    12. [12]

      Enemark, J. H.; Feltham, R. D.; Huie, B. T.; Johnson, P. L.; Swedo, K. B. J. Am. Chem. Soc. 1977, 99, 3285.  doi: 10.1021/ja00452a015

    13. [13]

      Roesk, H. W.; Bertel, N.; Edelmann, F.; Noltemeyer, M.; Sheldrick G. M. Z. Naturforsch. 1988, 43b, 72.

    14. [14]

      Koketsu, J.; Ninomiya, Y.; Suzuki, Y.; Koga, N. Inorg. Chem. 1997, 36, 694.  doi: 10.1021/ic951220u

    15. [15]

      Sudhakar, P. V.; Lammertsma, K. J. Am. Chem. Soc. 1991, 113, 1899.  doi: 10.1021/ja00006a005

    16. [16]

      Sazama, G. T.; Betley, T. A. Organometallics 2011, 30, 4315.  doi: 10.1021/om2003859

    17. [17]

      Hosokawa, S.; Ito, J.; Nishiyama, H. Organometallics 2012, 31, 8283.  doi: 10.1021/om300901k

    18. [18]

      Peddarao, T.; Baishya, A.; Barman, M. K.; Kumara, A.; Nembenna, S. New J. Chem. 2016, 40, 7627.  doi: 10.1039/C6NJ00907G

    19. [19]

      Chan, K. T. K.; Spencer, L. P.; Masuda, J. D.; McCahill, J. S. J.; Wei, P.; Stephan, D. W. Organometallics 2004, 23, 381.  doi: 10.1021/om030539g

    20. [20]

      Betz, R.; Reichvilse, M. M.; ESchumi, E.; Miller, C.; Klüfers, P. Z. Anorg. Allg. Chem. 2009, 635, 1204.  doi: 10.1002/zaac.v635:8

    21. [21]

      Olmstead, M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. 1991, 30, 2547.  doi: 10.1021/ic00011a017

    22. [22]

      Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 4759.  doi: 10.1002/anie.201001864

    23. [23]

      Evans, D. F. J. Chem. Soc. 1959, 2003.  doi: 10.1039/jr9590002003

    24. [24]

      Sur, S. K. J. Magn. Reson. 1989, 82, 169.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Wei Zhao Ying Gan Xihe Bi . Nurturing with Dedication: Springing into Excellence in Chemistry Postgraduate Education at Northeast Normal University. University Chemistry, 2024, 39(6): 29-36. doi: 10.3866/PKU.DXHX202312032

    18. [18]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

Metrics
  • PDF Downloads(18)
  • Abstract views(1567)
  • HTML views(263)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return