Citation: Li Gang, Chen Ye, Xia Jibao. Progress on Transition-Metal-Catalyzed Cross-Coupling Reactions of Ammonium Salts via C-N Bond Cleavage[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1949-1962. doi: 10.6023/cjoc201803013 shu

Progress on Transition-Metal-Catalyzed Cross-Coupling Reactions of Ammonium Salts via C-N Bond Cleavage

  • Corresponding author: Chen Ye, ychen19@gzu.edu.cn Xia Jibao, jibaoxia@licp.cas.cn
  • Received Date: 12 March 2018
    Revised Date: 8 April 2018
    Available Online: 27 August 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21702212, 21772208, 21602230) and the Natural Science Foundation of Jiangsu Province (No. BK20161260)the National Natural Science Foundation of China 21602230the National Natural Science Foundation of China 21702212the Natural Science Foundation of Jiangsu Province BK20161260the National Natural Science Foundation of China 21772208

Figures(5)

  • Amines containing carbon-nitrogen (C-N) bonds are widely distributed in natural products, drug molecules and functional materials.C-N bonds are one of the most abundant and inert bonds in organic molecules.Selective cleavage of C-N bonds to construct carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds represents a new synthetic method in organic synthesis.It is difficult for the direct cleavage of C-N bond.Ammonium salts are a series of stable compounds easily obtained from amines.The recent progress of transition-metal-catalyzed cross-coupling reactions via C-N bond cleavage using ammonium salts as starting materials is summerized.
  • 加载中
    1. [1]

      (a) Paul, F. ; Patt, J. ; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
      (b) Guram, A. S. ; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
      (c) Muci, A. R. ; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131.
      (d) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.

    2. [2]

      (a) Blanksby, S. J. ; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
      (b) Yao, X. -Q. ; Hou, X. -J. ; Jiao, H. ; Xiang, H. -W. ; Li, Y. -W. J. Phys. Chem. A 2003, 107, 9991.

    3. [3]

      (a) Bonanno, J. B. ; Henry, T. P. ; Neithamer, D. R. ; Wolczanski, P. T. ; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132.
      (b) Ueno, S. ; Chatani, N. ; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 6098.
      (c) Koreeda, T. ; Kochi, T. ; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 7238.
      (d) Tobisu, M. ; Nakamura, K. ; Chatani, N. J. Am. Chem. Soc. 2014, 136, 5587.
      (e) Zhao, Y. ; Snieckus, V. Org. Lett. 2014, 16, 3200.
      (f) Cong, X. ; Fan, F. ; Ma, P. ; Luo, M. ; Chen, H. ; Zeng, X. J. Am. Chem. Soc. 2017, 139, 15182.

    4. [4]

      (a) Geng, W. ; Zhang, W. -X. ; Hao, W. ; Xi, Z. J. Am. Chem. Soc. 2012, 134, 20230.
      (b) Xie, Y. ; Hu, J. ; Wang, Y. ; Xia, C. ; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (c) Hao, W. ; Geng, W. ; Zhang, W. X. ; Xi, Z. Chem. -Eur. J. 2014, 20, 2605.

    5. [5]

      Balz, G.; Schiemann, G.Ber.-Umweltbundesamt (Ger.) 1927, 60B, 1186.

    6. [6]

      Brasen, W.R.; Hauser, C.R.Org.Synth.1954, 34, 58.  doi: 10.15227/orgsyn.034.0058

    7. [7]

    8. [8]

      (a) Eds. : de Meijere, A. ; Diederich, F. ; Metal-Catalyzed CrossCoupling Reactions, Wiley-VCH, Weinheim, 2004, p. 437.
      (b) Eds. : de Meijere, A. ; Braese, S. ; Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions And More, Wiley-VCH, Weinheim, 2014.

    9. [9]

      Corriu, R.J.P.; Masse, J.P.J.Chem.Soc., Chem.Commun.1972, 144a.

    10. [10]

      Tamao, K.; Sumitani, K.; Kumada, M.J.Am.Chem.Soc.1972, 94, 4374.  doi: 10.1021/ja00767a075

    11. [11]

      Terao, J.; Kambe, N.Acc.Chem.Res.2008, 41, 1545.  doi: 10.1021/ar800138a

    12. [12]

      Wenkert, E.; Han, A.-L.; Jenny, C.-J.J.Chem.Soc., Chem.Commun.1988, 975.

    13. [13]

      (a) Wenkert, E. ; Michelotti, E. L. ; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246.
      (b) Yu, D. -G. ; Li, B. -J. ; Shi, Z. -J. Acc. Chem. Res. 2010, 43, 1486.
      (c) Rosen, B. M. ; Quasdorf, K. W. ; Wilson, D. A. ; Zhang, N. ; Resmerita, A. -M. ; Garg, N. K. ; Percec, V. Chem. Rev. 2011, 111, 1346.
      (d) Su, B. ; Cao, Z. -C. ; Shi, Z. -J. Acc. Chem. Res. 2015, 48, 886.
      (e) Tobisu, M. ; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.

    14. [14]

      (a) Clot, E. ; Eisenstein, O. ; Jasim, N. ; MacGregor, S. A. ; McGrady, J. E. ; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333.
      (b) Keyes, L. ; Love, J. A. RSC Catal. Ser. 2013, 11, 159.
      (c) Yang, S. -D. In Homogeneous Transition-Metal-Catalyzed C-F Sctivation, John Wiley & Sons, New York, 2015, pp. 203~268.

    15. [15]

      Reeves, J.T.; Fandrick, D.R.; Tan, Z.; Song, J.J.; Lee, H.; Yee, N.K.; Senanayake, C.H.Org.Lett.2010, 12, 4388.  doi: 10.1021/ol1018739

    16. [16]

      Guo, W.-J.; Wang, Z.-X.Tetrahedron 2013, 69, 9580.  doi: 10.1016/j.tet.2013.09.039

    17. [17]

      Guisan-Ceinos, M.; Martin-Heras, V.; Tortosa, M.J.Am.Chem.Soc.2017, 139, 8448.  doi: 10.1021/jacs.7b05273

    18. [18]

      Ma, S.; Liu, Q.; Tang, X.; Cai, Y.Asian J.Org.Chem.2017, 6, 1209.  doi: 10.1002/ajoc.v6.9

    19. [19]

      (a) Dieck, H. A. ; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133.
      (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.

    20. [20]

      Pan, Y.; Zhang, Z.; Hu, H.Synthesis 1995, 245.
       

    21. [21]

      (a) Miyaura, N. ; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.

    22. [22]

      Blakey, S.B.; MacMillan, D.W.C.J.Am.Chem.Soc.2003, 125, 6046.  doi: 10.1021/ja034908b

    23. [23]

      Buszek, K.R.; Brown, N.Org.Lett.2007, 9, 707.  doi: 10.1021/ol063027h

    24. [24]

      de la Herrán, G.; Segura, A.; Csákÿ, A.G.Org.Lett.2007, 9, 961.  doi: 10.1021/ol063042m

    25. [25]

      Humphrey, G.R.; Kuethe, J.T.Chem.Rev.2006, 106, 2875.  doi: 10.1021/cr0505270

    26. [26]

      Maity, P.; Shacklady-McAtee, D.M.; Yap, G.P.A.; Sirianni, E.R.; Watson, M.P.J.Am.Chem.Soc.2013, 135, 280.  doi: 10.1021/ja3089422

    27. [27]

      Shacklady-McAtee, D.M.; Roberts, K.M.; Basch, C.H.; Song, Y.G.; Watson, M.P.Tetrahedron 2014, 70, 4257.  doi: 10.1016/j.tet.2014.03.039

    28. [28]

      Liu, X.-Y.; Zhu, H.-B.; Shen, Y.-J.; Jiang, J.; Tu, T.Chin.Chem.Lett.2017, 28, 350.  doi: 10.1016/j.cclet.2016.09.006

    29. [29]

      Wang, T.; Yang, S.; Xu, S.; Han, C.; Guo, G.; Zhao, J.RSC Adv.2017, 7, 15805.  doi: 10.1039/C7RA02549A

    30. [30]

      Turtscher, P.L.; Davis, H.J.; Phipps, R.J.Synthesis 2018, 50, 793.  doi: 10.1055/s-0036-1588548

    31. [31]

      Basch, C.H.; Liao, J.; Xu, J.; Piane, J.J.; Watson, M.P.J.Am.Chem.Soc.2017, 139, 5313.  doi: 10.1021/jacs.7b02389

    32. [32]

      (a) Katritzky, A. R. ; Gruntz, U. ; Kenny, D. H. ; Rezende, M. C. ; Sheikh, H. J. Chem. Soc., Perkin Trans. 1 1979, 430.
      (b) Katritzky, A. R. ; Marson, C. M. Angew. Chem., Int. Ed. 1984, 23, 420.

    33. [33]

      (a) Shao, Z. ; Li, X. ; Chang, H. ; Wei, W. Chemistry 2013, 76, 704.
      (b) Dilman, A. D. ; Levin, V. V. Tetrahedron Lett. 2016, 57, 3986.

    34. [34]

      Xie, L.G.; Wang, Z.X.Angew.Chem., Int.Ed.2011, 50, 4901.  doi: 10.1002/anie.v50.21

    35. [35]

      (a) Zhang, X. -Q. ; Wang, Z. -X. J. Org. Chem. 2012, 77, 3658.
      (b) Yang, X. ; Wang, Z. -X. Organometallics 2014, 33, 5863.

    36. [36]

      Wang, D.-Y.; Morimoto, K.; Yang, Z.-K.; Wang, C.; Uchiyama, M.Chem.-Asian J.2017, 12, 2554.  doi: 10.1002/asia.v12.19

    37. [37]

      (a) Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508.
      (b) Fugami, K. ; Kosugi, M. Top. Curr. Chem. 2002, 219, 87.

    38. [38]

      Wang, D.-Y.; Kawahata, M.; Yang, Z.-K.; Miyamoto, K.; Komagawa, S.; Yamaguchi, K.; Wang, C.; Uchiyama, M.Nat.Commun.2016, 7, 12937.  doi: 10.1038/ncomms12937

    39. [39]

      Yamamura, M. ; Moritani, I. ; Murahashi, S. -I. J. Organomet. Chem. 1975, 91, C39.
      (b) Murahashi, S. ; Yamamura, M. ; Yanagisawa, K. ; Mita, N. ; Kondo, K. J. Org. Chem. 1979, 44, 2408.
      (c) Giannerini, M. ; Fañanás-Mastral, M. ; Feringa, B. L. Nat. Chem. 2013, 5, 667.

    40. [40]

      Yang, Z.-K.; Wang, D.-Y.; Minami, H.; Ogawa, H.; Ozaki, T.; Saito, T.; Miyamoto, K.; Wang, C.; Uchiyama, M.Chem.-Eur.J.2016, 22, 15693.  doi: 10.1002/chem.201603436

    41. [41]

      He, F.; Wang, Z.-X.Tetrahedron 2017, 73, 4450.  doi: 10.1016/j.tet.2017.06.004

    42. [42]

      Ogawa, H.; Yang, Z.-K.; Minami, H.; Kojima, K.; Saito, T.; Wang, C.; Uchiyama, M.ACS Catal.2017, 7, 3988.  doi: 10.1021/acscatal.7b01058

    43. [43]

      Zhu, F.; Tao, J.-L.; Wang, Z.-X.Org.Lett.2015, 17, 4926.  doi: 10.1021/acs.orglett.5b02458

    44. [44]

      Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X.J.Am.Chem.Soc.2015, 137, 1623.  doi: 10.1021/ja511796h

    45. [45]

      Uemura, T.; Yamaguchi, M.; Chatani, N.Angew.Chem., Int.Ed.2016, 55, 3162.  doi: 10.1002/anie.201511197

    46. [46]

      Klauck, F.J.R.; James, M.J.; Glorius, F.Angew.Chem., Int.Ed.2017, 56, 12336.  doi: 10.1002/anie.201706896

    47. [47]

      Spettel, M.; Pollice, R.; Schnürch, M.Org.Lett.2017, 19, 4287.  doi: 10.1021/acs.orglett.7b01946

    48. [48]

      (a) Hofmann, A. W. Justus Liebigs Ann. Chem. 1851, 79, 11.
      (b) von Hofmann, A. W. Justus Liebigs Ann. Chem. 1851, 78, 253.

    49. [49]

      Li, J.W.; Zheng, Z.J.; Xiao, T.T.; Xu, P.F.; Wei, H.Asian J.Org.Chem.2018, 7, 133.  doi: 10.1002/ajoc.v7.1

    50. [50]

      (a) Gambarotta, S. ; Alper, H. J. Organomet. Chem. 1980, 194, C19.
      (b) Lei, Y. ; Zhang, R. ; Wu, Q. ; Mei, H. ; Xiao, B. ; Li, G. J. Mol. Catal. A 2014, 381, 120.
      (c) Lei, Y. ; Zhang, R. ; Wu, L. ; Wu, Q. ; Mei, H. ; Li, G. Appl. Organomet. Chem. 2014, 28, 310.

    51. [51]

      Moragas, T.; Gaydou, M.; Martin, R.Angew.Chem., Int.Ed.2016, 55, 5053.  doi: 10.1002/anie.v55.16

    52. [52]

      Zhang, X.-Q.; Wang, Z.-X.Org.Bioorg.Chem.2014, 12, 1448.  doi: 10.1039/c3ob41989d

    53. [53]

      Zhang, H.; Hagihara, S.; Itami, K.Chem.-Eur.J.2015, 21, 16796.  doi: 10.1002/chem.v21.47

    54. [54]

      Hu, J.; Sun, H.; Cai, W.; Pu, X.; Zhang, Y.; Shi, Z.J.Org.Chem.2016, 81, 14.  doi: 10.1021/acs.joc.5b02557

    55. [55]

      Basch, C.H.; Cobb, K.M.; Watson, M.P.Org.Lett.2016, 18, 136.  doi: 10.1021/acs.orglett.5b03455

    56. [56]

      Mfuh, A.M.; Doyle, J.D.; Chhetri, B.; Arman, H.D.; Larionov, O.V.J.Am.Chem.Soc.2016, 138, 2985.  doi: 10.1021/jacs.6b01376

    57. [57]

      (a) Said, S. A. ; Fiksdahl, A. Tetrahedron: Asymmetry 2001, 12, 1947.
      (b) Gui, Y. ; Tian, S. K. Org. Lett. 2017, 19, 1554.
      (c) Erika, B. ; Istvan, G. ; Gyorgy, K. Lett. Org. Chem. 2011, 8, 22.

    58. [58]

      Lu, F.L.; Chen, Z.Y.; Li, Z.; Wang, X.Y.; Peng, X.Y.; Li, C.; Li, R.; Pei, H.Q.; Wang, H.M.; Gao, M.Asian J.Org.Chem.2018, 7, 141.  doi: 10.1002/ajoc.v7.1

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(97)
  • Abstract views(5668)
  • HTML views(1501)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return