Citation: Yang Zhonghua, Liu Lanye, Zhao Yihe, Hong Yuanlin, Ruan Hongli, Lü Chengwei. Choline Chloride as Catalyst towards the Attractive Yonemitsu Reaction of Benzaldehyde, Indole, and Malononitrile[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2761-2766. doi: 10.6023/cjoc201803007 shu

Choline Chloride as Catalyst towards the Attractive Yonemitsu Reaction of Benzaldehyde, Indole, and Malononitrile

  • Corresponding author: Lü Chengwei, chengweilv@126.com
  • Received Date: 5 March 2018
    Revised Date: 31 May 2018
    Available Online: 7 October 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21403100), the National Students Program for Innovation and Entrepreneurship Training (No. 201710165304)the National Students Program for Innovation and Entrepreneurship Training 201710165304the National Natural Science Foundation of China 21403100

  • Using choline chloride as cheap and safe accelerator was efficient to promote the Yonemitsu type condensation of indole, benzaldehyde, and malononitrile. More importantly, introducing right amount of water in reaction system was crucial to get desired 3-substituted indoles in good to excellent yields. Due to the catalyst has excellent solubility in aqueous ethanol, the final concoction was easy to separate. Many desired products could be obtained after filtration and washed with cold aqueous ethanol without further purification. Catalyst could further reuse for five more reaction cycles with negligible loss in activity.
  • 加载中
    1. [1]

      Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.  doi: 10.1002/anie.200901843

    2. [2]

      Kumar. A.; Gupta, M. K.; Kumar, M.; Saxena, D. RSC Adv. 2013, 3, 1673.  doi: 10.1039/C2RA22428C

    3. [3]

      Xia, A. B.; Wu, C.; Wang, T.; Zhang, Y. P.; Du, X. H.; Zhong, A. G.; Xu, D. Q.; Xu, Z. Y. Adv. Synth. Catal. 2014, 356, 1753.  doi: 10.1002/adsc.201301114

    4. [4]

      Miyaji, R.; Asano, K.; Matsubara, S. Org. Biomol. Chem. 2014, 12, 119.  doi: 10.1039/C3OB41938J

    5. [5]

      Zhu, X.; Zhou, X.; Xiang, D. Heterocycle 2015, 91, 1637.  doi: 10.3987/COM-15-13248

    6. [6]

      Banari, H.; Kiyani, H.; Pourali, A. Res. Chem. Intermed. 2017, 43, 1635.  doi: 10.1007/s11164-016-2720-7

    7. [7]

      Rajesh, U. C.; Wang, J.; Prescott, S. ACS Sustainable Chem. Eng. 2014, 3, 9.

    8. [8]

      Tayade, Y. A.; Patil, D. R.; Wagh, Y. B. Tetrahedron Lett. 2015, 56, 666.  doi: 10.1016/j.tetlet.2014.12.012

    9. [9]

      Reddy, M. V.; Reddy, G. C. S.; Jeong, Y. T. Tetrahedron Lett. 2016, 57, 1289.  doi: 10.1016/j.tetlet.2016.02.032

    10. [10]

      Zhu, S.; Xu, L.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229(in Chinese).
       

    11. [11]

      Li, M.; Zhang, B.; Gu, Y. Green Chem. 2012, 14, 2421.  doi: 10.1039/c2gc35668f

    12. [12]

      Vilches-Herrera, M.; Knepper, I.; De Souza, N. ACS Comb. Sci. 2012, 14, 434.  doi: 10.1021/co300042v

    13. [13]

      Moosavi-Zare, A. R.; Zolfigol, M. A.; Farahmand, S.; Zare, A.; Pourali, A. R.; Ayazi-Nasrabadi, R. Synlett 2014, 193.
       

    14. [14]

      Chandam, D. R.; Mulik, A. G.; Patil, P. P.; Jagdale, S. D.; Patil, D. R.; Deshmukh, M. B. Res. Chem. Intermed. 2015, 41, 761.  doi: 10.1007/s11164-013-1226-9

    15. [15]

      Reddy, A. V. S.; Jeong, Y. T. Tetrahedron 2016, 72, 116.  doi: 10.1016/j.tet.2015.11.010

    16. [16]

      Zhang, G. W.; Wang, L.; Nie, J.; Ma, J. A. Adv. Synth. Catal. 2008, 350, 1457.  doi: 10.1002/adsc.v350:10

    17. [17]

      Galzerano, P.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7892.  doi: 10.1002/anie.v48:42

    18. [18]

      Kumar, A.; Gupta, M. K.; Kumar, M. Green Chem. 2012, 14, 290.  doi: 10.1039/C1GC16297G

    19. [19]

      Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Tetrahedron Lett. 1978, 19, 1759.  doi: 10.1016/0040-4039(78)80037-9

    20. [20]

      Oikawa, Y.; Tanaka, M.; Hirasawa, H. Chem. Pharm. Bull. 1981, 29, 1606.  doi: 10.1248/cpb.29.1606

    21. [21]

      Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Chem. Pharm. Bull. 1982, 30, 3092.  doi: 10.1248/cpb.30.3092

    22. [22]

      Nemes, C.; Jeannin, L.; Sapi, J.; Laronze, M.; Seghir, H.; Augé, F.; Laronze, J. Y. Tetrahedron 2000, 56, 5479.  doi: 10.1016/S0040-4020(00)00446-4

    23. [23]

      Dardennes, E.; Kovács-Kulyassa, A.; Renzetti, A.; Sapi, J.; Laronze, J. Y. Tetrahedron Lett. 2003, 44, 221.  doi: 10.1016/S0040-4039(02)02537-6

    24. [24]

      Wang, C.; Zhang, Y. Q.; Li, G. S.; Li, J. C.; Li, X. L. Chin. J. Org. Chem. 2003, 23, 1416(in Chinese).  doi: 10.3321/j.issn:0253-2786.2003.12.016
       

    25. [25]

      Cochard, F.; Laronze, M.; Sigaut, P.; Sapi, J.; Laronze, J. Y. Tetrahedron Lett. 2004, 45, 1703.  doi: 10.1016/j.tetlet.2003.12.099

    26. [26]

      Gerencsér, J.; Panka, G.; Nagy, T.; Egyed, O.; Dorman, G.; Urge, L.; Darvas, F. J. Comb. Chem. 2005, 7, 530.  doi: 10.1021/cc040101j

    27. [27]

      Yan, N.; Xia, J. H.; Xiong, Y. K.; Xiong, B.; Lin, C. H.; Liao, W. L. Chin. J. Org. Chem. 2014, 34, 2487(in Chinese).
       

    28. [28]

      Xu, Z. H. Chin. J. Org. Chem. 2014, 34, 1687(in Chinese).
       

    29. [29]

      Lin, C. H.; Xu, Z. H.; Liao, W. L.; Qiu, Z. Y.; Xia, J. H. Chin. J. Org. Chem. 2015, 35, 212(in Chinese).
       

    30. [30]

      Yan, N.; Xiong, Y. K.; Xia, J. H.; Rui, P. X.; Lei, Z. W.; Liao, W. L.; Xiong, B. Chin. J. Org. Chem. 2015, 35, 384(in Chinese).
       

    31. [31]

      Jing, L.; Wei, J.; Zhou, L.; Huang, Z. Y.; Li, Z. K.; Wu, D.; Xiang, H. F.; Zhou, X. G. Chem. Eur. J. 2010, 16, 10955.  doi: 10.1002/chem.v16:36

    32. [32]

      Zenz, I.; Mayr, H. J. Org. Chem. 2011, 76, 9370.  doi: 10.1021/jo201678u

    33. [33]

      Qu, Y.; Ke, F.; Zhou, L.; Li, Z.; Xiang, H.; Wu, D.; Zhou, X. Chem. Commun. 2011, 47, 3912.  doi: 10.1039/c0cc05695b

    34. [34]

      Anselmo, D.; Escudero-Adán, E. C.; Martínez, M.; Kleij, A. W. Eur. J. Inorg. Chem. 2012, 2012, 4694.
       

    35. [35]

      Wang, L.; Huang, M.; Zhu, X.; Wang, Y. Appl. Catal. A:Gen. 2013, 454, 160.  doi: 10.1016/j.apcata.2012.12.008

    36. [36]

      He, Y. H.; Cao, J. F.; Li, R.; Xiang, Y.; Yang, D. C.; Guan, Z. Tetrahedron 2015, 71, 9299.  doi: 10.1016/j.tet.2015.10.027

    37. [37]

      Ahad, A.; Farooqui, M. Chem. Sci. Trans. 2016, 5, 202.

    38. [38]

      Amrollahi, M. A.; Kheilkordi, Z. J. Iran. Chem. Soc. 2016, 13, 925.  doi: 10.1007/s13738-016-0808-z

    39. [39]

      Ghohe, N. M.; Tayebee, R.; Amini, M. M.; Osatiashtiani, A.; Lsaacs, M. A.; Lee, A. F. Tetrahedron 2017, 73, 5862.  doi: 10.1016/j.tet.2017.08.030

    40. [40]

      Radošević, K.; Bubalo, M. C.; Srček, V. G.; Grgas, D.; Dragičević, T. L.; Redovniković, I. R. Ecotoxicol. Environ. Saf. 2015, 112, 53.
       

    41. [41]

      Maugeri, Z.; De Maria, P. D. RSC Adv. 2012, 2, 421.  doi: 10.1039/C1RA00630D

    42. [42]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, 1, 70.
       

    43. [43]

      Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D. Green Chem. 2011, 13, 82.  doi: 10.1039/C0GC00395F

    44. [44]

      Martins, M. A. P.; Paveglio, G. C.; Rodrigues, L. V.; Frizzo, C. P.; Zanatta, N.; Bonacorso, H. G. New. J. Chem. 2016, 40, 5989.  doi: 10.1039/C5NJ03654B

    45. [45]

      Mao, S. X.; Li, F.; Lv, Y.; Lü, C. W.; Yü, S. J. Heterocycles 2017, 94, 1895.  doi: 10.3987/COM-17-13760

    46. [46]

      Xiao, D.; Zheng, W.; Wei, X. Y.; Lang, J.; Gao, S. Q.; Lyu, C. W. Chin. J. Appl. Chem. 2017, 34, 1295(in Chinese).  doi: 10.11944/j.issn.1000-0518.2017.11.170005

    47. [47]

      Jin, T. S.; Wang, A. Q.; Wang, X.; Zhang, J. S.; Li, T. S. Synlett 2004, 871.
       

    48. [48]

      Ghosh, P. P.; Paul, S.; Das, A. R. Tetrahedron Lett. 2013, 54, 138.  doi: 10.1016/j.tetlet.2012.10.106

    49. [49]

      Singh, S.; Srivastava, A.; Mobin, S. M.; Samanta, S. RSC Adv. 2015, 5, 5010.  doi: 10.1039/C4RA10610E

    50. [50]

      Nemati, F.; Nikkhah, S. H.; Elhampour, A. Chin. Chem. Lett. 2015, 26, 1397.  doi: 10.1016/j.cclet.2015.07.009

    51. [51]

      Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C. L.; Wang, C. Y. Green Chem. 2016, 18, 1032.  doi: 10.1039/C5GC01838B

    52. [52]

      Adib, M.; Yasaei, Z.; Mirzaei, P. Synlett 2016, 383.
       

    53. [53]

      Shabalala, N.; Maddila, S.; Jonnalagadda, S. B. New. J. Chem. 2016, 40, 5107.  doi: 10.1039/C5NJ03574K

    54. [54]

      Chen, L.; Bao, S.; Yang, L.; Zhang, X.; Li, B.; Li, Y. Res. Chem. Intermed. 2017, 43, 3883.  doi: 10.1007/s11164-016-2843-x

    55. [55]

      Lyu, C. W.; Liu, Y. H.; Zhou, X. X.; Wang, J. J. Chin. J. Appl. Chem. 2015, 32, 1371(in Chinese).
       

    56. [56]

      Lü, C. W.; Liu, Y. H.; Zhou, X. X. Chin. J. Org. Chem. 2016, 36, 1407(in Chinese).
       

    57. [57]

      Lü, C. W.; Wang, J. J.; Liu, Y. H.; Shan, W. J.; Sun, Q.; Shi, L. Res. Chem. Intermed. 2017, 43, 943.  doi: 10.1007/s11164-016-2675-8

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    5. [5]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    8. [8]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    9. [9]

      Yansong Xiao Yi Huang Xingxing Ma Qiuling Song . The Matteson Reaction in Organic Synthesis: From Fundamentals to Frontiers. University Chemistry, 2025, 40(10): 114-120. doi: 10.12461/PKU.DXHX202411023

    10. [10]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    11. [11]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(29)
  • Abstract views(1872)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return