Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery
- Corresponding author: Deng Wei, wdeng@shu.edu.cn
Citation:
Zhang Wei, Yao Zijian, Deng Wei. Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery[J]. Chinese Journal of Organic Chemistry,
;2018, 38(10): 2713-2719.
doi:
10.6023/cjoc201803006
Ranucci, E.; Suardi, M. A.; Annunziata, R.; Ferruti, P.; Chiellini, F.; Bartoli, C. Biomacromolecules 2008, 9, 2693.
doi: 10.1021/bm800655s
Wang, X.; He, Y.-J.; Wu, J.-Y.; Gao, C.; Xu, Y.-H. Biomacromolecules 2010, 11, 245.
doi: 10.1021/bm901091z
Jones, C. H.; Chen, C.-K.; Jiang, M.; Fang, L.; Cheng, C.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 1138.
doi: 10.1021/mp300666s
Jones, C. H.; Chen, C.-K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 4082.
doi: 10.1021/mp400467x
Zhang, X.-Q.; Chen, M.; Lam, R.; Xu, X.-Y.; Osawa, E.; Ho, D. ACS Nano 2010, 3, 2609.
Kievit, F. M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R. G.; Zhang, M. Q. ACS Nano 2010, 4, 4587.
doi: 10.1021/nn1008512
Cai, X.; Jin, R.; Wang, J.; Yue, D.; Jiang, Q.; Wu, Y.; Gu, Z. ACS Appl. Mater. Interfaces 2016, 11, 5821.
Kong, L.; Alves, C. S.; Hou, W.; Qiu, J.; Mohwald, H.; Tomas, H.; Shi, X. ACS Appl. Mater. Interfaces 2015, 7, 4833.
doi: 10.1021/am508760w
Li, T.; Wu, L.; Zhang, J.; Xi, G.; Pang, Y.; Wang, X.; Chen, T. ACS Appl. Mater. Interfaces 2016, 8, 31311.
doi: 10.1021/acsami.6b09915
Lim, D. G.; Rajasekaran, N.; Lee, D.; Kim, N. A.; Jung, H. S.; Hong, S.; Shin, Y. K.; Kang, E.; Jeong, S. H. ACS Appl. Mater. Interfaces 2017, 9, 31543.
doi: 10.1021/acsami.7b09624
Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 14200.
doi: 10.1021/acsami.6b04462
Zhang, C.; Zhang, T.; Jin, S.; Xue, X.; Yang, X.; Gong, N.; Zhang, J.; Wang, P.-C.; Tian, J.-H.; Xing, J.; Liang, X.-J. ACS Appl. Mater. Interfaces 2017, 9, 4425.
doi: 10.1021/acsami.6b11536
Guan, X.; Guo, Z.; Lin, L.; Chen, J.; Tian, H.; Chen, X. Nano Lett. 2016, 16, 6823.
doi: 10.1021/acs.nanolett.6b02536
Tsai, Y. J.; Hu, C.-C.; Chu, C.-C.; Toyoko, I. Biomacromolecules 2011, 12, 4283.
doi: 10.1021/bm201196p
Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819.
doi: 10.1021/cr990116h
Cheng, C.-X.; Jiao, T.-F.; Tang, R.-P.; Chen, E.-Q.; Liu, M.-H.; Xi, F. Macromolecules 2006, 29, 6327.
Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902.
doi: 10.1021/ja056313h
Jin, H.-B.; Zheng, Y.-L.; Liu, Y.; Cheng, H.-X.; Zhou Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 10352.
doi: 10.1002/anie.201103164
Al-Jamal, K. T.; Al-Jamal, W. T.; Wang, T. W. J.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.
doi: 10.1021/nn305860k
Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
doi: 10.1021/bm400460r
Huang, H.; Cao, D.-W.; Qin, L.-H.; Tian, S.-Q.; Liang, Y.; Pan S.-R.; Feng, M. Mol. Pharmaceutics 2014, 11, 2323.
doi: 10.1021/mp5002608
Dohnal, V.; Maly, J.; Havlickova, M.; Semeradtova, A.; Herman, D.; Kuca, K. J. Chromatogr. Sci. 2014, 52, 321.
doi: 10.1093/chromsci/bmt032
Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; Soleymani, J.; Jafari, F.; DelaGuardia, M. TrAC-Trends Anal. Chem. 2014, 53, 137.
doi: 10.1016/j.trac.2013.09.015
Yang, J.-P.; Zhang, Q.; Chang, H.; Cheng, Y.-Y. Chem. Rev. 2015, 115, 5274.
doi: 10.1021/cr500542t
Bhattacharya, P.; Nasybulin, E. N.; Engelhard, M. H.; Kovarik, L.; Bowden, M. E.; Li, X.-S.; Gaspar, D. J.; Xu, W.; Zhang, J.-G. Adv. Funct. Mater. 2014, 24, 7510.
doi: 10.1002/adfm.v24.47
Li, H. M.; Sun, X.; Zhao, D.; Zhang, Z.-R. Mol. Pharmaceutics 2012, 9, 2974.
doi: 10.1021/mp300321n
Tabassi, A. S. S.; Tekie, F. S. M.; Hadizadeh, F.; Rashid, R.; Khodaverdi, E.; Mohajeri, S. A. J. Sol.-Gel. Sci. Technol. 2014, 69, 166.
doi: 10.1007/s10971-013-3200-9
Shah, S.; Solanki, A.; Sasmal, P. K.; Lee, K. B. J. Am. Chem. Soc. 2013, 135, 15682.
doi: 10.1021/ja4071738
Su, C.-J.; Chen, H.-L.; Wei, M.-C.; Peng, S.-F.; Sung, H.-W.; Ivanov, V. A. Biomacromolecules 2009, 10, 773.
doi: 10.1021/bm801246e
Zhou, Z.-X.; Ma, X.-P.; Jin, E.; Tang, J.-B.; Sui, M.-H.; Shen, Y.-Q.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M. Biomaterials 2013, 34, 5722.
doi: 10.1016/j.biomaterials.2013.04.012
Bekhradnia, S.; Zhu, K.; Knudsen, K. D.; Sande, S. A.; Nystr m, B. J. Mater. Sci. 2014, 49, 6102.
doi: 10.1007/s10853-014-8340-y
Higa, O. Z.; Faria, H. A. M.; De Queiroz, A. A. A. Radiat. Phys. Chem. 2014, 98, 118.
doi: 10.1016/j.radphyschem.2014.01.017
Pan, J.-J.; Yuan, Y.-Q.; Wang, H.-W.; Liu, F.; Xiong, X.-H.; Chen, H.; Yuan, L. ACS Appl. Mater. Interfaces 2016, 8, 15138.
doi: 10.1021/acsami.6b04689
Coue, G.; Freese, C.; Unger, R. E.; Kirkpatrick, C. J.; Engbersen, J. F. J. Acta Biomater. 2013, 9, 6062.
doi: 10.1016/j.actbio.2012.12.005
Martello, F.; Piest, M.; Engbersen, J. F. J.; Ferruti, P. J. Controlled Release 2012, 164, 372.
doi: 10.1016/j.jconrel.2012.07.029
Wang, R.-B.; Zhou, L.-Z.; Zhou, Y.-F.; Li, G.-L.; Zhu, X.-Y.; Gu, H.-C.; Jiang, X.-L.; Li, H.-Q.; Wu, J.-L.; He, L.; Guo, X.-Q.; Zhu, B.-S.; Yan, D.-Y. Biomacromolecules 2010, 11, 489.
doi: 10.1021/bm901215s
Liu, J.-Y.; Huang, W.; Pan, Y.; Huang, P.; Zhu, X.-Y.; Zhou, Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 9162.
doi: 10.1002/anie.201102280
Liu, Y.; Yu, C.-Y.; Jin, H.-B.; Jiang, B.-B.; Zhu, X.-Y.; Zhou, Y. -F.; Lu Z.-Y.; Yan, D.-Y. J. Am. Chem. Soc. 2013, 135, 4765.
doi: 10.1021/ja3122608
Tao, W.; Liu, Y.; Jiang, B.-B.; Yu, S.-R.; Huang, W.; Zhou, Y.-F.; Yan, D.-Y. J. Am. Chem. Soc. 2012, 134, 762.
doi: 10.1021/ja207924w
Santhakumaran, L. M.; Thomas, T.; Thomas, T. J. Nucleic Acids Res. 2004, 32, 2102.
doi: 10.1093/nar/gkh526
Sylvestre, J. P.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Am. Chem. Soc. 2004, 126, 7176.
doi: 10.1021/ja048678s
Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
doi: 10.1002/(ISSN)1521-3757
Hsieh, S. J.; Wang, C.-C.; Chen, C.-Y. Macromolecules 2009, 42, 4787.
doi: 10.1021/ma9002616
Zhang, Q.; Wang, N.; Zhao, L.-B.; Xu, T.-W.; Cheng, Y.-Y. ACS Appl. Mater. Interfaces 2013, 5, 1907.
doi: 10.1021/am400155b
Wang, N.; Dong, A.; Tang, H.; Kirk, E. A. V.; Johnson, P. A.; Murdoch, W. J.; Radosz, M.; Shen, Y. Macromol. Biosci. 2007, 7, 1187.
doi: 10.1002/(ISSN)1616-5195
Zhou, Y.-F.; Huang, W.-J.; Liu, Y.; Zhu, X.-Y.; Yan, D.-Y. Adv. Mater. 2010, 22, 4567.
doi: 10.1002/adma.201000369
Wang, D.-L.; Zhao, T.-Y.; Zhu, X.-Y.; Yan, D.-Y.; Wang, W.-X. Chem. Soc. Rev. 2015, 44, 4023.
doi: 10.1039/C4CS00229F
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Liangyu Zhang , Lei Lei , Zhuangzhuang Zhao , Guizhi Yang , Kaitao Wang , Liying Wang , Ningxin Zhang , Yanjia Ai , Xinqing Ma , Guannan Liu , Meng Zhao , Jun Wu , Dongjun Lin , Chun Chen . Enhanced venetoclax delivery using l-phenylalanine nanocarriers in acute myeloid leukemia treatment. Chinese Chemical Letters, 2025, 36(6): 110316-. doi: 10.1016/j.cclet.2024.110316
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Ling Yang , Min Ren , Jie Wang , Liming He , Shanshan Wu , Shuai Yang , Wei Zhao , Hao Cheng , Xiaoming Zhou , Maling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822
Makhloufi Zoulikha , Zhongjian Chen , Jun Wu , Wei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Qin Yu , Haisheng He , Jianping Qi , Yi Lu , Wei Wu . Oral delivery of insulin by barbed microneedles actuated by intestinal peristalsis. Chinese Chemical Letters, 2024, 35(9): 109888-. doi: 10.1016/j.cclet.2024.109888
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
(a) Linear PAAs1 was synthesized in water; (b~d) low branched PAAs2, PAAs3, PAAs4 were synthesized in mixed solution of water and DMSO; (e) high branched PAAs was obtained in mixed solution of water and DMSO at volume ratio of 1:5; (f) PAAs was modified with excess ammonia
Binding ability of cationic PAAs to DNA, electrophoretic mobility of plasmid DNA in the complexes. For different amino modified PAAs, gel electrophoresis experiments were carried out at the N/P ratios of 0, 1, 2, 5, 10, 15, and 20 from left to right, respectively. First lane (N/P=0) in each test is used as blank experimentation. Agarose gel electrophoresis experimental result of DNA released from the compound with PAAs5-1 (a) and PAAs5-2 (b), respectively
All images were gained with complexes deposited onto fresh mica surface. Each image represents a 2 µm×2 µm scan
The cells were treated with increasing concentrations of PAAs5-2 and PEI for 24 h in serum-free medium before analysis by MTT assay