Citation: Ren Qingyun, Nie Biao, Zhang Yingjun, Zhang Ji. Functional Switch between Pharmacophore and Directing Group and Their Application in Drug Discovery and Development via C-H Activation and Functionalization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2465-2490. doi: 10.6023/cjoc201803002 shu

Functional Switch between Pharmacophore and Directing Group and Their Application in Drug Discovery and Development via C-H Activation and Functionalization

  • Corresponding author: Zhang Ji, zhangji@hecpharm.com
  • Received Date: 2 March 2018
    Revised Date: 4 May 2018
    Available Online: 5 October 2018

    Fund Project: the National Major Scientific and Technological Special Project for "Significant New Drugs Development" 2018ZX09201002Project supported by the Introduction of Innovative R & D Team Program of Guangdong Province (No. 201301Y0105381261), the State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357) and the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (No. 2018ZX09201002)the Introduction of Innovative R & D Team Program of Guangdong Province 201301Y0105381261the State Key Laboratory of Anti-Infective Drug Development 2015DQ780357

Figures(32)

  • The functional switch of a C—H activation directing group to a pharmacophore is introduced and analyzed, and the value of the pharmacophore and the application of C—H activation are exemplified. It is concluded that many pharmacophores, such as N-containing heteroaromatic, nitrile, carboxylic acid, amide and sulfonamide groups, are ideal directing groups for C—H activation enabling the subsequent stages of drug synthesis, and showing that there is a correlation between a directing group and a pharmacophore. The late-stage functionalization will greatly simplify and effectively improve the possibility of discovering new drugs and potentially shortening the overall synthesis. The latest breakthroughs of C—H activation and application in the drug discovery process are reviewed as case studies, providing several industrial examples of using a pharmacophore as directing group for drug synthesis. It is believed that this development will promote a more rapid and green drug synthesis.
  • 加载中
    1. [1]

      (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
      (b) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. J. Med. Chem. 1999, 42, 3251.
      (c) Leach, A. R.; Gillet, V. J.; Lewis, R. A.; Taylor, R. J. Med. Chem. 2010, 53, 539.

    2. [2]

      (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (b) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2.

    3. [3]

      (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (b) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. Chem. Rev. 2017, 117, 9302.

    4. [4]

      (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
      (b) Pulis, A. P.; Procter, D. L. Angew. Chem., Int. Ed. 2016, 55, 9842.

    5. [5]

      (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
      (b) Ping, Y. Y.; Wang, L. P.; Ding, Q. P.; Peng, Y. Y. Adv. Synth. Catal. 2017, 359, 3274.

    6. [6]

      (a) Wencel-Delord, J.; Droege, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
      (b) Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.

    7. [7]

      (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (b) Aziz, J.; Piguel, S. Synlett. 2017, 49, 4562.

    8. [8]

      (a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
      (b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529.
      (c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.

    9. [9]

      (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2012, 45, 5068.
      (b) Shang, M.; Sun, S. Z.; Wang, H. L.; Wang, M. M.; Dai, H. X. Synthesis 2016, 48, 4381.

    10. [10]

      (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
      (b) Biafora, A.; Gooβen, L. J. Synlett 2017, 28, 1885.

    11. [11]

      (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
      (b) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.

    12. [12]

    13. [13]

      Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.  doi: 10.1039/C5CS00628G

    14. [14]

      Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.  doi: 10.1021/acs.jmedchem.6b00153

    15. [15]

      Wu, X. F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40. 4986.  doi: 10.1039/c1cs15109f

    16. [16]

      (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40. 5068.
      (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.

    17. [17]

      Zhang, W.; Zhang, J. H.; Liu, Y. K. Chin. J. Org. Chem. 2014, 34, 36(in Chinese).
       

    18. [18]

      Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.  doi: 10.1021/ar300185z

    19. [19]

      Zhang, J.; Nie, B.; Zhang, Y. J. Chin. J. Org. Chem. 2015, 35, 337(in Chinese).
       

    20. [20]

      Pennington, L. D.; Moustakas, D. T. J. Med. Chem. 2017, 60, 3552.  doi: 10.1021/acs.jmedchem.6b01807

    21. [21]

      Verheij, M. H. P.; Thompson, A. J.; van Muijlwijk-Koezen, J. E.; Lummis, S. C. R.; Leurs, R.; de Esch, I. J. P. J. Med. Chem. 2012, 55, 8603.  doi: 10.1021/jm300801u

    22. [22]

      Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.; Gorzalka, S.; Knospe, M.; Schiedel, A. C.; Cristalli, G.; Müller, C. E. J. Med. Chem. 2009, 52, 5974.
       

    23. [23]

      Yuan, Y.; Zaidi, S. A.; Elbegdorj, O.; Aschenbach, L. C. K.; Li, G.; Stevens, D. L.; Scoggins, K. L.; Dewey, W. L.; Selley, D. E.; Zhang, Y. J. Med. Chem. 2013, 56, 9156.  doi: 10.1021/jm4012214

    24. [24]

      Verhoest, P. R.; Chapin, D. S.; Corman, M.; Fonseca, K.; Harms, J. F.; Hou, X.; Marr, E. S.; Menniti, F. S.; Nelson, F.; O'Connor, R.; Pandit, J.; Proulx-LaFrance, C.; Schmidt, A. W.; Schmidt, C. J.; Suiciak, J. A.; Liras, S. J. Med. Chem. 2009, 52, 5188.  doi: 10.1021/jm900521k

    25. [25]

      Vanotti, E.; Amici, R.; Bargiotti, A.; Berthelsen, J.; Bosotti, R.; Ciavolella, A.; Cirla, A.; Cristiani, C.; D'Alessio, R.; Forte, B.; Isacchi, A.; Martina, K.; Menichincheri, M.; Molinari, A.; Montagnoli, A.; Orsini, P.; Pillan, A.; Roletto, F.; Scolaro, A.; Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C. J. Med. Chem. 2008, 51, 487.  doi: 10.1021/jm700956r

    26. [26]

      Duraiswamy, A. J.; Lee, M. A.; Madan, B.; Ang, S. H.; Tan, E. S. W.; Cheong, W. W. V.; Ke, Z.; Pendharkar, V.; Ding, L. J.; Chew, Y. S.; Manoharan, V.; Sangthongpitag, K.; Alam, J.; Poulsen, A.; Ho, S. Y.; Virshup, D. M.; Keller, T. H. J. Med. Chem. 2015, 58, 5889.  doi: 10.1021/acs.jmedchem.5b00507

    27. [27]

      Blum, C. A.; Caldwell, T.; Zheng, X.; Bakthavatchalam, R.; Capitosti, S.; Brielmann, H.; De Lombaert, S.; Kershaw, M. T.; Matson, D.; Krause, J. E.; Cortright, D.; Crandall, M.; Martin, W. J.; Murphy, B. A.; Boyce, S.; Jones, A. B.; Mason, G.; Rycroft, W.; Perrett, H.; Conley, R.; Burnaby-Davies, N.; Chenard, B. L.; Hodgetts, K. J. J. Med. Chem. 2010, 53, 3330.  doi: 10.1021/jm100051g

    28. [28]

      Kalyani, D.; Deprez, N. R.; Desai, L.; Sanford, V. M. S. J. Am. Chem. Soc. 2005, 127, 7330.  doi: 10.1021/ja051402f

    29. [29]

      Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.  doi: 10.1021/ol051255q

    30. [30]

      Yu, W.-Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C. Org. Lett. 2009, 11, 3174.  doi: 10.1021/ol900756g

    31. [31]

      Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011, 76, 8543.  doi: 10.1021/jo2016168

    32. [32]

      Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.  doi: 10.1021/ja062856v

    33. [33]

      Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.  doi: 10.1021/ol051486x

    34. [34]

      Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.  doi: 10.1021/ja404526x

    35. [35]

      Li, C.; Yano, T.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801.  doi: 10.1002/anie.201305202

    36. [36]

      (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020.
      (b) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266.

    37. [37]

      Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.  doi: 10.1021/ja805688p

    38. [38]

      Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822.  doi: 10.1021/ja909807f

    39. [39]

      Gong, X.; Song, G.; Zhang, H.; Li, X. Org. Lett. 2011, 13, 1766.  doi: 10.1021/ol200306y

    40. [40]

      Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.  doi: 10.1002/(ISSN)1521-3773

    41. [41]

      Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.  doi: 10.1021/ja8026295

    42. [42]

      Patrick, F.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 10139.  doi: 10.1021/ja5049303

    43. [43]

      Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806  doi: 10.1021/jacs.6b08662

    44. [44]

      Cao, H.; Chen, L.; Liu, J.; Cai, H.; Deng, H.; Chen, G.; Yan, C.; Chen, Y. RSC Adv. 2015, 5, 22356.  doi: 10.1039/C5RA01342A

    45. [45]

      Cao, H.; Lei, S.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Qiu, S.; Chen, Y. RSC Adv. 2014, 4, 50137.  doi: 10.1039/C4RA09669J

    46. [46]

      Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Synthesis 2008, 2537.

    47. [47]

      Cao, H.; Lei, S.; Li, N.; Chen, L.; Cai, H.; Tan, J. Chem. Commun. 2015, 51, 1823.  doi: 10.1039/C4CC09134E

    48. [48]

      Samanta, S.; Mondal, S.; Santra, S.; Kibriya, G.; Hajra, A. J. Org. Chem. 2016, 81, 10088.  doi: 10.1021/acs.joc.6b02091

    49. [49]

      Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P. Eur. J. Org. Chem. 2015, 29, 6526.
       

    50. [50]

      (a) Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. J. Org. Chem. 2015, 80, 1332.
      (b) Ji, X.-M.; Wei, L.; Chen, F.; Tang, R.-Y. RSC Adv. 2015, 5, 29766.

    51. [51]

      Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.  doi: 10.1002/anie.v48:18

    52. [52]

      Fleming, F. F.; Yao, L.-H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.  doi: 10.1021/jm100762r

    53. [53]

      Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643(in Chinese).
       

    54. [54]

      Hingorani, M.; Lightman, S. Drugs 1995, 50, 208.  doi: 10.2165/00003495-199550020-00002

    55. [55]

      Norman, P. Curr. Opin. Anti-Inflammatory Immunomodulatory Invest. Drugs 2000, 2, 113.

    56. [56]

      Reginster, J.-Y.; Brandi, M.-L.; Cannata-Andia, J.; Cooper, C.; Cortet, B.; Feron, J.-M.; Genant, H.; Palacios, S.; Ringe, J. D.; Rizzoli, R. Osteoporosis Int. 2015, 26, 1667.  doi: 10.1007/s00198-015-3109-y

    57. [57]

      Rodriguez-Tudela, J. L.; Alcazar-Fuoli, L.; Mellado, E.; Alastruey-Izquierdo, A.; Monzon, A.; Cuenca-Estrella, M. Antimicrob. Agents Chemother. 2008, 52, 2468.  doi: 10.1128/AAC.00156-08

    58. [58]

      Illnait-Zaragozi, M. T.; Martínez, G. F.; Curfs-Breuker, I.; Fernández, C. M.; Boekhout, T.; Meis, J. F. Antimicrob. Agents Chemother. 2008, 52, 1580.  doi: 10.1128/AAC.01384-07

    59. [59]

      Yin, W.; Tsutsumi, K. Cardiovasc. Drug Rev. 2003, 21, 133.
       

    60. [60]

      Hosie, J.; Scott, A. K.; Petrie, J. C.; Cockshott, I. D. Br. J. Clin. Pharmacol. 1990, 29, 333.  doi: 10.1111/bcp.1990.29.issue-3

    61. [61]

      Sánchez, C.; Bøgesø, K. P.; Ebert, B.; Reines, E. H.; Braestrup, C. Psychopharmacology (Berl) 2004, 174, 163.
       

    62. [62]

      Usui, F.; Maeda, K.; Kusai, A.; Nishimura, K.; Yamamoto, K. Int. J. Pharmol. 1997, 154, 59.  doi: 10.1016/S0378-5173(97)00129-4

    63. [63]

      Hughes, Z. A.; Starr, K. R.; Langmead, C. J.; Hill, M.; Bartoszyk, G. D.; Hagan, J. J.; Middlemiss, D. N.; Dawson, L. A. Eur. J. Pharmacol. 2005, 510, 49.  doi: 10.1016/j.ejphar.2005.01.018

    64. [64]

      Bourin, M.; NicDhonnchadha, B. A.; Claude, C. M.; Dib, M.; Hascoet, M. Behav. Brain Res. 2001, 124, 87.  doi: 10.1016/S0166-4328(01)00238-8

    65. [65]

      Sanna, E.; Busonero, F.; Talani, G.; Carta, M.; Massa, F.; Peis, M.; Maciocco, E.; Biggio, G. Eur. J. Pharmacol. 2002, 451, 103.  doi: 10.1016/S0014-2999(02)02191-X

    66. [66]

      John, G. W.; Perez, M.; Pauwels, P. J.; Le Grand, B.; Verscheure, Y.; Colpaert, F. C. CNS Drug Rev. 2000, 6, 278.

    67. [67]

      White, W. B.; Cannon, C. P.; Heller, S. R.; Nissen, S. E.; Bergenstal, R. M.; Bakris, G. L.; Perez, A. T.; Fleck, P. R.; Mehta, C. R.; Kupfer, S.; Wilson, C.; Cushman, W. C.; Zannad, F. N. Engl. J. Med. 2013, 369, 1327.  doi: 10.1056/NEJMoa1305889

    68. [68]

      (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049.
      (b) Dey, A.; Agasti, S.; Maiti, D. Org. Biomol. Chem. 2016, 14, 5440.
      (c) Yang, J. Org. Biomol. Chem. 2015, 13, 1930.
      (d) Qiu, G.; Wu, J. Org. Chem. Front. 2015, 2, 169.
      (e) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
      (f) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.

    69. [69]

      Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fang, M. Org. Lett. 2011, 13, 1286.  doi: 10.1021/ol103075n

    70. [70]

      Du, B.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 2786  doi: 10.1021/jo302765g

    71. [71]

      Reddy, M. C.; Jeganmohan, M. Chem. Commun. 2015, 51, 10738  doi: 10.1039/C5CC03112E

    72. [72]

      Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.  doi: 10.1021/jo301384r

    73. [73]

      Chotana, G. A.; Rak, M. A.; Smith, M. R. J. Am. Chem. Soc. 2005, 127, 10539.  doi: 10.1021/ja0428309

    74. [74]

      Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.  doi: 10.1021/ol502823c

    75. [75]

      Tang, R. Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.  doi: 10.1038/nature12963

    76. [76]

      Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. J. Am. Chem. Soc. 2015, 137, 11888.  doi: 10.1021/jacs.5b06793

    77. [77]

      Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M. J.; Tran, V.; Vijayendran, K. G.; Brunden, K. R.; Kozlowski, M. C.; Thomas, C. J.; Smith Ⅲ, A. B.; Huryn, D. M.; Ballatore, C. J. Med. Chem. 2016, 59, 3183.  doi: 10.1021/acs.jmedchem.5b01963

    78. [78]

      Smith, D. A. Metabolism, Pharmaco Kinetics and Toxicity of Functional Groups: Impact of the Building Blocks of Medicinal Chemistry in ADMET, Royal Society of Chemistry, Cambridge, UK, 2010, Chapter 3, pp. 99~167.

    79. [79]

      (a) Kaeding, W. J. Org. Chem. 1961, 26, 3144.
      (b) Kaeding, W.; Shulgin, A. T. J. Org. Chem. 1962, 27, 3551.
      (c) Kaeding, W. J. Org. Chem. 1964, 29, 2556.
      (d) Kaeding, W. J. Org Chem. 1965, 30, 3750.
      (e) Kaeding, W. J. Org. Chem. 1965, 30, 3754

    80. [80]

      Drapeau, M. P.; Gooβen, L. J. Chem.-Eur. J. 2016, 22, 1.  doi: 10.1002/chem.201504553

    81. [81]

      Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.  doi: 10.1021/jo980584b

    82. [82]

      Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 264.  doi: 10.1002/anie.201507801

    83. [83]

      Chiong, H. A.; Pham, Q. N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.  doi: 10.1021/ja071845e

    84. [84]

      (a) Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
      (b) Wang, D. H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676.

    85. [85]

      Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. J. Angew. Chem., Int. Ed. 2016, 55, 6933.  doi: 10.1002/anie.201600894

    86. [86]

      Mamone, P.; Danoun, G.; Gooßen, L. Angew. Chem., Int. Ed. 2013, 52, 6704.  doi: 10.1002/anie.v52.26

    87. [87]

      Reinaud, O.; Capdevielle, P.; Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 566.
       

    88. [88]

      Taktak, S.; Flook, M.; Foxman, B. M.; Que, L. Jr.; Rybak-Akimova, E. V. Chem. Commun. 2005, 42, 5301.
       

    89. [89]

      (a) Ng, K. H.; Ng, F. N.; Yu, W. Y. Chem. Commun. 2012, 48, 11680.
      (b) Ng, F. N, Zhou, Z.; Yu, W. Y. Chem.-Eur. J. 2014, 20, 4474.

    90. [90]

      Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.  doi: 10.1002/chem.201500331

    91. [91]

      Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215.  doi: 10.1002/anie.v47:28

    92. [92]

      Wang, D.-H.; Masa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.  doi: 10.1021/ja801355s

    93. [93]

      Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.  doi: 10.1021/ja807129e

    94. [94]

      Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.  doi: 10.1021/jo902139b

    95. [95]

      Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380.  doi: 10.1002/anie.v50.6

    96. [96]

      Karthikeyan, J.; Cheng, C. H. Angew. Chem., Int. Ed. 2011, 50, 9880.  doi: 10.1002/anie.v50.42

    97. [97]

      (a) Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2014, 50, 12116.
      (b) Peng X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Org. Lett. 2014, 16, 5354.

    98. [98]

      Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51, 12343.  doi: 10.1002/anie.v51.49

    99. [99]

      Li, D.-D.; Yuan, T.-T.; Wang, G.-W. Chem. Commun. 2011, 47, 12789  doi: 10.1039/c1cc15897j

    100. [100]

      Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.  doi: 10.1021/ol202187h

    101. [101]

      Zhong, H.; Yang, D.; Wang, S.; Huang, J. Chem. Commun. 2012, 48, 3236  doi: 10.1039/c2cc17859a

    102. [102]

      Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.  doi: 10.1021/ja109676d

    103. [103]

      Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.  doi: 10.1021/ja402274g

    104. [104]

      Yang, W.; Wang, S.; Zhang, Q.; Liu, Q.; Xu, X. Chem. Commun. 2015, 51, 661.  doi: 10.1039/C4CC08260E

    105. [105]

      Yang, W.; Sun, J.; Xu, X.; Zhang, Q.; Liu, Q. Chem. Commun. 2014, 50, 4420.  doi: 10.1039/c3cc49496a

    106. [106]

      Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318.  doi: 10.1002/anie.201201273

    107. [107]

      Wang, Z.; Kuninobu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 6140.  doi: 10.1021/jacs.5b02435

    108. [108]

      Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.  doi: 10.1021/ja402274g

    109. [109]

      Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.  doi: 10.1002/anie.v47:34

    110. [110]

      Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.  doi: 10.1021/ja201708f

    111. [111]

      Pham, M. V, Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 10610.  doi: 10.1002/anie.201206191

    112. [112]

      Xie, W.; Yang, J.; Wang, B.; Li, B. J. Org. Chem. 2014, 79, 8278.  doi: 10.1021/jo5015239

    113. [113]

      Li, X.; Dong, Y.; Qu, F.; Liu, G. J. Org. Chem. 2015, 80, 790.  doi: 10.1021/jo502224d

    114. [114]

      Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.  doi: 10.1038/nature21418

    115. [115]

      Wallace, M. D.; McGuire, M. A.; Yu, M. S.; Goldfinger, L.; Liu, L.; Dai, W.; Shilcrat, S. Org. Process Res. Dev. 2004, 8, 738  doi: 10.1021/op0499021

    116. [116]

      Fray, M. J.; Gillmore, A. T.; Glossop, M. S.; McManus, D. J.; Moses, I. B.; Praquin, C. F. B.; Reeves, K. A.; Thompson, L. R. Org. Process Res. Dev. 2010, 14, 263.  doi: 10.1021/op900092h

    117. [117]

      Madasu, S. B.; Vekariya, N. A.; Koteswaramma, C.; Islam, A.; Sanasi, P. D.; Korupolu, R. B. Org. Process Res. Dev. 2012, 16, 2025.  doi: 10.1021/op300179u

    118. [118]

      Ackermann, L. Org. Process Res. Dev. 2015, 19, 260.  doi: 10.1021/op500330g

    119. [119]

      Seki, M. Org. Process Res. Dev. 2016, 20, 867.  doi: 10.1021/acs.oprd.6b00116

    120. [120]

      (a) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
      (b) Huang, J.; Wang, X.; Chan, J. Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, Eds.: Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T., Wiley Inc., Hoboken, New Jersey, 2013, Chapter 12.

    121. [121]

      Gauthier, D. R. Jr.; Limanto, J.; Devine, P. N.; Desmond, R. A.; Szumigala, R. H. Jr.; Foster, B. S, Volante, R. P. J. Org. Chem. 2005, 70, 5938.  doi: 10.1021/jo0507035

    122. [122]

      Ouellet, S. G.; Roy, A.; Molinaro, C.; Angelaud, R.; Marcoux, J. F.; O'shea, P. D.; Davies, J. W. J. Org. Chem. 2011, 76, 1436.  doi: 10.1021/jo1018574

    123. [123]

      (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
      (b) Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.
      (c) Yang, G.; Lindovska, P.; Zhu, D.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    9. [9]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    20. [20]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

Metrics
  • PDF Downloads(101)
  • Abstract views(7141)
  • HTML views(1539)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return