Citation: Pan Guoshuai, Wu Kongchuan, Deng Zeying, Zhang Xinyu, Zhang Xiaofeng, Lin Shen, Huang Qiufeng. Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2076-2084. doi: 10.6023/cjoc201802008 shu

Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant

  • Corresponding author: Huang Qiufeng, qiufenghuang@fjnu.edu.cn
  • Received Date: 4 February 2018
    Revised Date: 25 March 2018
    Available Online: 13 August 2018

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01572the National Natural Science Foundation of China 6152010615Project supported by the National Natural Science Foundation of China (No. 6152010615), the Natural Science Foundation of Fujian Province (No. 2017J01572), the Foundation of Fujian Educational Committee (No. JZ160424), the Fujian Province University Fund for New Century Excellent Talents, and Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710394061)the Foundation of Fujian Educational Committee JZ160424the Fujian Province University Fund for New Century Excellent Talents, and Undergraduate Training Program for Innovation and Entrepreneurship 201710394061

Figures(3)

  • Palladium-catalyzed cross-dehydrogenative coupling of uracil or caffeine with unactivated arenes has been developed. The approach was characterized by using atmospheric pressure of molecular oxygen as the sole oxidant. Functional groups such as halo, ester, nitro, nitrile and ether are well-tolerated under the reaction conditions. This novel strategy provides a straightforward, facile and economical route to C6-aryl uracil derivatives or C8-aryl caffeine derivatives.
  • 加载中
    1. [1]

    2. [2]

      (a) Reddy, M. C. ; Jeganmohan, M. Chem. Commun. 2015, 51, 10738.
      (b) Gao, G. -L. ; Xia, W. ; Jain, P. ; Yu, J. -Q. Org. Lett. 2016, 18, 744.
      (c) Gong, H. ; Zeng, H. ; Zhou, F. ; Li, C. -J. Angew. Chem., Int. Ed. 2015, 54, 5718.
      (d) Yang, Z. ; Qiu, F. -C. ; Gao, J. Li, Z. -W. ; Guan, B. -T. Org. Lett. 2015, 17, 4316.
      (e) Lou, S. -J. ; Mao, Y. -J. ; Xu, D. -Q. ; He, J. -Q. ; Chen, Q. ; Xu, Z. -Y. ACS Catal. 2016, 6, 3890.
      (f) Huang, Y. ; Wu, D. ; Huang, J. ; Guo, Q. ; Li, J. ; You, J. Angew. Chem., Int. Ed. 2004, 53, 12158.
      (g) Qin, D. ; Wang, J. ; Qin, X. ; Wang, C. ; Gao, G. ; You, J. Chem. Commun. 2015, 51, 6190.
      (h) Zhang, X. -S. ; Zhang, Y. -F. ; Li, Z. -W. ; Luo, F. -X. ; Shi, Z. -J. Angew. Chem., Int. Ed. 2015, 54, 5478.
      (i) Zhang, Y. ; Zhao, H. ; Zhang, M. ; Su, W. Angew. Chem., Int. Ed. 2015, 54, 3817.

    3. [3]

      (a) Li, B. ; Lan, J. ; Wu, D. ; You, J. Angew. Chem., Int. Ed. 2015, 54, 14008.
      (b) Gao, D. -W. ; Gu, Q. ; You, S. -L. J. Am. Chem. Soc. 2016, 138, 2544.
      (c) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 14137.
      (d) Wang, D. -H. ; Engle, K. M. ; Shi, B. -F. ; Yu, J. -Q. Science 2010, 327, 315.
      (e) Ye. X. ; Shi, X. Org. Lett. 2014, 16, 4448.
      (f) Huang, Q. ; Ke, S. ; Qiu, L. ; Zhang, X. ; Lin, S. ChemCatChem 2014, 6, 1531.
      (g) Huang, Q. ; Song, Q. ; Cai, J. ; Zhang, X. ; Lin, S. Adv. Synth. Catal. 2013, 355, 1512.

    4. [4]

    5. [5]

      (a) Zhang, Y. -H. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2009, 131, 5072.
      (b) BraSche, G. ; García-Fortanet, J. ; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
      (c) Yang, D. ; Mao, S. ; Gao, Y. -R. ; Guo, D. -D. ; Guo, S. -H. ; Lin B. ; Wang, Y. -Q. RSC Adv. 2015, 2, 3727.
      (d) Kim, N. ; Min, M. ; Hong, S. Org. Chem. Front. 2015, 2, 1621.
      (e) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
      (f) Liu, B. ; Jiang, H. -Z. ; Shi, B. -F. J. Org. Chem. 2014, 79, 1521.
      (g) Lu, Y. ; Wang, H. -W. ; Spangler, J. E. ; Chen, K. ; Cui, P. -P. ; Zhao, Y. ; Sun, W. -Y. ; Yu, J. -Q. Chem. Sci. 2015, 6, 1923.

    6. [6]

      Huang, Q.; Zhang, X.; Qiu, L.; Wu, J.; Xiao, H.; Zhang, X.; Lin, S. Adv. Synth. Catal. 2015, 357, 3753.  doi: 10.1002/adsc.201500632

    7. [7]

      Zhang, X.; Su, L.; Qiu, L.; Fan, Z.; Zhang, X.; Lin, S.; Huang, Q. Org. Biomol. Chem. 2017, 15, 3499.  doi: 10.1039/C7OB00616K

    8. [8]

      (a) He, L. ; Pei, H. ; Ma, L. ; Pu, Y. ; Chen, J. ; Liu, Z. ; Ran, Y. ; Lei, L. ; Fu, S. ; Tang, M. ; Peng, A. ; Long, C. ; Chen, L. Eur. J. Med. Chem. 2014, 87, 595.
      (b) Thomas, R. ; Lee, J. ; Chevalier, V. ; Sadler, S. ; Selesniemi, K. ; Hatfield, S. ; Sitkovsky, M. ; Ondrechen, M. J. ; Jones, G. B. Bioorg. Med. Chem. 2013, 21, 7453.
      (c) Kim, S. -M. ; Lee, M. ; Lee, S. Y. ; Park, E. ; Lee, S. -M. ; Kim, E. J. ; Han, M. Y. ; Yoo, T. ; Ann, J. ; Yoon, S. ; Lee, J. ; Lee, J. J. Med. Chem. 2016, 59, 9150.
      (d) Qian, H. -Y. ; Wang, Z. -L. ; Pan, Y. -L. ; Chen, L. -L. ; Xie, X. ; Chen, J. -Z. ACS Med. Chem. Lett. 2017, 8, 678.
      (e) Rivara, S. ; Piersanti, G. ; Bartoccini, F. ; Diamantini, G. ; Pala, D. ; Riccioni, T. ; Stasi, M. A. ; Cabri, W. ; Borsini, F. ; Mor, M. ; Tarzia, G. ; Minetti, P. J. Med. Chem. 2013, 56, 1247.

    9. [9]

      Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378.  doi: 10.1021/ol200065s

    10. [10]

      Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228.  doi: 10.1016/j.tetlet.2011.09.066

    11. [11]

      (a) Musaev, D. G. ; Figg, T. M. ; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009.
      (b) Haines, B. E. ; Musaev, D. G. ACS Catal. 2015, 5, 830.
      (c) Li, G. ; Leow, D. ; Wan, L. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
      (d) Musaev, D. G. ; Kaledinm, A. L. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2012, 134, 1690.
      (e) Wang, H. -L. ; Hu, R. -B. ; Zhang, H. ; Zhou, A. -X. ; Yang, S. -D. Org. Lett. 2013, 15, 5302.
      (f) Cong, X. ; Tang, H. ; Wu, C. ; Zhang, X. Organometallics 2013, 32, 6565.
      (g) Cheng, G. -J. ; Yang, Y. -F. ; Liu, P. ; Chen, P. ; Sun, T. -Y. ; Li, G. ; Zhang, X. ; Houk, K. N. ; Yu, J. -Q. ; Wu, Y. -D. J. Am. Chem. Soc., 2014, 136, 894.

  • 加载中
    1. [1]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    2. [2]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    3. [3]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    4. [4]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    9. [9]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    17. [17]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    18. [18]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    19. [19]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    20. [20]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

Metrics
  • PDF Downloads(4)
  • Abstract views(1867)
  • HTML views(1062)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return