Citation: Zhang Jingang, Wu Zhengxing, Xie Fang, Zhang Wanbin. Metal-Catalyzed Unsaturated Hydrocarbon Functionalization Applied in the Synthesis of Pyrrolidines and Pyrrolines[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1319-1326. doi: 10.6023/cjoc201802001 shu

Metal-Catalyzed Unsaturated Hydrocarbon Functionalization Applied in the Synthesis of Pyrrolidines and Pyrrolines

  • Corresponding author: Xie Fang, xiefang@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 24 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21572129)the National Natural Science Foundation of China 21572129

Figures(6)

  • Pyrrolidines and pyrrolines, as important building blocks, are widely applied in the fields of medicine, agriculture and materials. Many synthetic methods for the preparation of pyrrolidines and pyrrolines have been reported over the past few years. Recently, following the rapid development of organometallic chemistry, the metal-catalyzed functionalization of unsaturated hydrocarbons has gradually become the research focus of organic synthesis methodology, due to the high efficiency and diversity of functionalization. Therefore the constructions of pyrrolidines and pyrrolines using metal-catalyzed unsaturated hydrocarbon functionalization are important and very useful. The development of metal-catalyzed functionalizations of different types of unsaturated hydrocarbons for the synthesis of pyrrolidines and pyrrolines is summarized.
  • 加载中
    1. [1]

      (a) Kini, G. D. ; Hennen, W. J. ; Robins, R. K. J. Org. Chem. 1986, 51, 4436.
      (b) Arredondo, V. M. ; Tian, S. ; McDonald, F. E. ; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633.
      (c) Yu, S. ; Saenz, J. ; Srirangam, J. K. J. Org. Chem. 2002, 67, 1699.
      (d) Ortega, H. G. ; Crusats, J. ; Feliz, M. ; Ribo, J. M. J. Org. Chem. 2002, 67, 4170.
      (e) Bullington, J. L. ; Wolff, R. R. ; Jackson, P. F. J. Org. Chem. 2002, 67, 9439.
      (f) Shenoy, S. L. ; Cohen, D. ; Erkey, C. ; Weiss, R. A. Ind. Eng. Chem. Res. 2002, 41, 1484.
      (g) Lee, D. ; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 6870.
      (h) Azioune, A. ; Ben Slimane, A. ; Ait Hamou, L. ; Pleuvy, A. ; Chehimi, M. M. ; Perruchot, C. ; Armes, S. P. Langmuir 2004, 20, 3350.
      (i) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
      (j) Magedov, I. V. ; Luchetti, G. ; Evdokimov, N. M. ; Manpadi, M. ; Steelant, W. F. A. ; Van Slambrouck, S. ; Tongwa, P. ; Antipin, M. Y. ; Kornienko, A. Bioorg. Med. Chem. Lett. 2008, 18, 1392.
      (k) Gupta, R. ; Walunj, S. S. ; Tokala, R. K. ; Parsa, K. V. ; Singh, S. K. ; Pal, M. Curr. Drug Targets 2009, 10, 71.
      (l) More, S. S. ; Krishna Mohan, T. ; Sateesh Kumar, Y. ; Syam Kumar, U. K. ; Patel, N. B. Beilstein J. Org. Chem. 2011, 7, 831.
      (m) Servillo, L. ; Giovane, A. ; Balestrieri, M. L. ; Cautela, D. ; Castaldo, A. D. J. Agric. Food Chem. 2011, 59, 274.
      (n) Grychowska, K. ; Satala, G. ; Kos, T. ; Partyka, A. ; Colacino, E. ; Chaumont-Dubel, S. ; Bantreil, X. ; Wesolowska, A. ; Pawlowski, M. ; Martinez, J. ; Marin, P. ; Subra, G. ; Bojarski, A. J. ; Lamaty, F. ; Popik, P. ; Zajdel, P. ACS Chem. Neurosci. 2016, 7, 972.

    2. [2]

      (a) Nakamura, I. ; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
      (b) Cai, T. ; Hu, B. ; Lv, C. Chin. J. Org. Chem. 2005, 25, 1311(in Chinese).
      (蔡超君, 胡炳成, 吕春绪, 有机化学, 2005, 25, 1311. )
      (c) Fan, H. ; Peng, J. N. ; Hamann, M. T. ; Hu, J. F. Chem. Rev. 2008, 108, 264.
      (d) Bhardwaj, V. ; Gumber, D. ; Abbot, V. ; Dhiman, S. ; Sharma, P. RSC Adv. 2015, 5, 15233.
      (e) Khajuria, R. ; Dham, S. ; Kapoor, K. K. RSC Adv. 2016, 6, 37039.
      (f) Feng, J. J. ; Zhang, J. L. ACS Catal. 2016, 6, 6651.
      (g) Wang, Q. ; Chang, H. ; Wei, W. ; Liu, Q. ; Gao, W. ; Li, Y. ; Li, X. Chin. J. Org. Chem. 2016, 36, 939(in Chinese).
      (王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939. )
      (h) Gholap, S. S. Eur. J. Med. Chem. 2016, 110, 13.
      (i) Shimizu, S. Chem. Rev. 2017, 117, 2730.
      (j) Wei, X. ; Handoko, D. D. ; Pather, L. ; Methven, L. ; Elmore, J. S. Food Chem. 2017, 232, 531.
      (k) Gao, Y. ; Xiao, Z. ; Liu, L. ; Huang, P. Chin. J. Org. Chem. 2017, 37, 1189(in Chinese).
      (高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189. )
      (l) Zhu, C. ; Feng, J. ; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1165(in Chinese).
      (朱超泽, 冯见君, 张俊良, 有机化学, 2017, 37, 1165. )

    3. [3]

      (a) Ager, D. J. ; Prakash, I. ; Schaad, D. R. Chem. Rev. 1996, 96, 835.
      (b) Bennani, Y. L. ; Hanessian, S. Chem. Rev. 1997, 97, 3161.
      (c) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
      (d) Bataille, C. J. R. ; Donohoe, T. J. Chem. Soc. Rev. 2011, 40, 114.
      (e) Wang, J. ; Cui, D. Chin. J. Org. Chem. 2016, 36, 1163(in Chinese).
      (王剑, 崔冬梅, 有机化学, 2016, 36, 1163. )
      (f) Cai, S. -H. ; Da, B. -C. ; Zhou, J. -H. ; Xu, Y. -H. ; Loh, T. -P. Chin. J. Chem. 2016, 34, 1076.
      (g) Wu, Z. ; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250(in Chinese).
      (吴正兴, 张万斌, 有机化学, 2017, 37, 2250. )

    4. [4]

      (a) Pandey, G. ; Banerjee, P. ; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
      (b) Müller, T. E. ; Hultzsch, K. C. ; Yus, M. ; Foubelo, F. ; Tada, M. Chem. Rev. 2008, 108, 3795.
      (c) Huang, L. B. ; Arndt, M. ; Gooßen K. ; Heydt, H. ; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.

    5. [5]

      For allene: (a) Meguro, M. ; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421.
      (b) Hamilton, G. L. ; Kang, E. J. ; Mba, M. ; Toste, F. D. Science 2007, 317, 496.
      For alkyne:
      (c) Lutete, L. M. ; Kadota, I. ; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 1622.
      For isolated alkene:
      (d) Bender, C. F. ; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
      (e) Jiang, H. J. ; Liu, K. ; Yu, J. ; Zhang, L. ; Gong, L. Z. Angew. Chem., Int. Ed. 2017, 56, 11931.
      (f) Gurak, John A. ; Engle, Keary M. Synlett 2017, 28, 2057.

    6. [6]

      (a) Fix, S. R. ; Brice, J. L. ; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164.
      (b) McDonald, R. I. ; White, P. B. ; Weinstein, A. B. ; Tam, C. P. ; Stahl, S. S. Org. Lett. 2011, 13, 2830.

    7. [7]

      (a) Muñiz, K. ; Streuff, J. ; Hövelmann, C. H. ; Núñez, A. Angew. Chem., Int. Ed. 2007, 46, 7125.
      (b) Sibbald, P. A. ; Michael, F. E. Org. Lett. 2009, 11, 1147.
      (c) Sibbald, P. A. ; Rosewall, C. F. ; Swartz, R. D. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
      (d) Wang, Y. F. ; Zhu, X. ; Chiba S. J. Am. Chem. Soc. 2012, 134, 3679.

    8. [8]

      (a) Donohoe, T. J. ; Churchill, G. H. ; Wheelhouse, K. M. P. ; Glossop, P. A. Angew. Chem., Int. Ed. 2006, 45, 8025.
      (b) Fuller, P. H. ; Kim, J. W. ; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638.

    9. [9]

      (a) Ney, J. E. ; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605.
      (b) Sherman, E. S. ; Chemler, S. R. ; Tan, T. B. ; Gerlits, O. Org. Lett. 2004, 6, 1573.
      (c) Sherman, E. S. ; Fuller, P. H. ; Kasi, D. ; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.
      (d) Zeng, W. ; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.
      (e) Zeng, W. ; Chemler, S. R. J. Org. Chem. 2008, 73, 6045.
      (f) Rosewall, C. F. ; Sibbald, P. A. ; Liskin, D. V. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
      (g) Sibbald, P. A. ; Rosewall, C. F. ; Swartz, R. D. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
      (h) Lemen, G. S. ; Wolfe, J. P. Org. Lett. 2010, 12, 2322.
      (i) Zhang, G. Z. ; Cui, L. ; Wang, Y. Z. ; Zhang, L. M. J. Am. Chem. Soc. 2010, 132, 1474.
      (j) Brenzovich, W. E. ; Benitez, D. ; Lackner, A. D. ; Shunatona, H. P. ; Tkatchouk, E. ; Goddard, W. A. ; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 5519.
      (k) Tkatchouk, E. ; Mankad, N. P. ; Benitez, D. ; Goddard, W. A. ; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293.

    10. [10]

      (a) Ney, J. E. ; Wolfe J. P. Angew. Chem., Int. Ed. 2004, 43, 3605.
      (b) Ney, J. E. ; Hay, M. B. ; Yang, Q. F. ; Wolfe, J. P. Adv. Synth. Catal. 2005, 347, 1614.
      (c) Lemen, G. S. ; Wolfe, J. P. Org. Lett. 2010, 12, 2322.

    11. [11]

      (a) Schierle, K. ; Vahle, R. ; Steckhan, E. Eur. J. Org. Chem. 1998, 509.
      (b) Field, L. D. ; Messerle, B. A. ; Wren, S. L. Organometallics 2003, 22, 4393.
      (c) Burling, S. ; Field, L. D. ; Li, H. L. ; Messerle, B. A. ; Turner, P. Eur. J. Inorg. Chem. 2003, 3179.
      (d) Burling, S. ; Field, L. D. ; Messerle, B. A. ; Turner, P. Organometallics 2004, 23, 1714.
      (e) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. Organometallics 2005, 24, 4241.
      (f) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. ; Failes, T. Organometallics 2007, 26, 2058.
      (g) Burling, S. ; Field, L. D. ; Messerle, B. A. ; Rumble, S. L. Organometallics 2007, 26, 4335.
      (h) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. Dalton Trans. 2009, 3599.
      (i) Beeren, S. R. ; Dabb, S. L. ; Messerle, B. A. J. Organomet. Chem. 2009, 694, 309.
      (j) Beeren, S. R. ; Dabb, S. L. ; Edwards, G. ; Smith, M. K. ; Willis, A. C. ; Messerle, B. A. New J. Chem. 2010, 34, 1200.
      (k) Rao, W. D. ; Kothandaraman, P. ; Koh, C. B. ; Chan, P. W. H. Adv. Synth. Catal. 2010, 352, 2521.
      (l) Rumble, S. L. ; Page, M. J. ; Field, L. D. ; Messerle, B. A. Eur. J. Inorg. Chem. 2012, 2226.
      (m) Rossom, W. V. ; Matsushita, Y. ; Ariga, K. ; Hill, J. P. RSC Adv. 2014, 4, 4897.
      (n) Shin, Y. H. ; Maheswara, M. ; Hwang, J. Y. ; Kang, E. J. Eur. J. Org. Chem. 2014, 2305.
      (o) Gao, P. C. ; Sipos, G. ; Foster, D. ; Dorta, R. ACS Catal. 2017, 7, 6060.
      (p) Timmerman, J. C. ; Laulhé, S. ; Widenhoefer, R. A. Org. Lett. 2017, 19, 1466.

    12. [12]

      (a) Faulkner, A. ; Bower, J. F. Angew. Chem., Int. Ed. 2012, 51, 1675.
      (b) Faulkner, A. ; Scott, J. S. ; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 7224.
      (c) Chen, C. ; Hou, L. L. ; Cheng, M. ; Su, J. H. ; Tong, X. F. Angew. Chem., Int. Ed. 2015, 54, 3092.

    13. [13]

      (a) Hegedus, L. S. ; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444.
      (b) Pugin, B. ; Venanzi, L. M. J. Am. Chem. Soc. 1983, 105, 6877.
      (c) Shi, Z. Z. ; Suri, M. ; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 4892.

    14. [14]

      (a) Tsutsui, H. ; Narasaka, K. Chem. Lett. 1999, 28, 45.
      (b) Tsutsui, H. ; Kitamura, M. ; Narasaka, K. Bull. Chem. Soc. Jpn. 2002, 75, 1451.

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    5. [5]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(40)
  • Abstract views(3731)
  • HTML views(1428)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return