Citation: Zeng Yijie, Duan Yue, Zhao Hui, Hu Xiangguo. Efficient and Chemoselective Deprotection of N-t-Butyloxycarbonyl Group Mediated by Selectfluor[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1712-1717. doi: 10.6023/cjoc201801036 shu

Efficient and Chemoselective Deprotection of N-t-Butyloxycarbonyl Group Mediated by Selectfluor

  • Corresponding author: Zhao Hui, zh1986@iccas.ac.cn Hu Xiangguo, huxiangg@iccas.ac.cn
  • Received Date: 25 January 2018
    Revised Date: 12 February 2018
    Available Online: 16 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21502076), the Natural Science Foundation of Jiangxi Province (No. 20161BAB213068), the Hundred-Talent Program (Hefei) and the Outstanding Young Talent Program of Jiangxi Province (No. 20171BCB23039)the Hundred-Talent Program (Hefei) and the Outstanding Young Talent Program of Jiangxi Province 20171BCB23039the National Natural Science Foundation of China 21502076the Natural Science Foundation of Jiangxi Province 20161BAB213068

Figures(1)

  • Selectfluor, 1-chloromethyl-4-fluoro-1, 4-diazoniabicyclo-[2.2.2] octane bis(tetrafluoroborate), is among the most popular fluorinating reagents owning to its commercially availability and non-hygroscopic property. The discovery and understanding of new reactivities of selectfluor are thus important for reaction design and optimization when this popular reagent is employed. It has been found that selectfluor could selectively remove Boc group from doubly protected amines in acetonitrile. This deprotection could be of interest when compared to other reported methods, not only because selectfluor is a solid and easy-to-handle, but also because the reaction is mild, operationally simple and chemoselective. The potential usefulness of this method is demonstrated by the deprotection of a series of protected amino acids and a one-step synthesis of pharmaceutically important purine derivative. The NMR experiments conducted in CD3CN explain why stoichiometric amount of selectfluor is needed for a successful reaction.
  • 加载中
    1. [1]

      (a) Banks, R. E. ; Mohialdinkhaffaf, S. N. ; Lal, G. S. ; Sharif, I. ; Syvret, R. G. J. Chem. Soc., Chem. Commun. 1992, 595.
      (b) Nyffeler, P. T. ; Duron, S. G. ; Burkart, M. D. ; Vincent, S. P. ; Wong, C. H. Angew. Chem., Int. Ed. 2005, 44, 192.

    2. [2]

      (a) Rueda-Becerril, M. ; Sazepin, C. C. ; Leung, J. C. T. ; Okbinoglu, T. ; Kennepohl, P. ; Paquin, J. F. ; Sammis, G. M. J. Am. Chem. Soc. 2012, 134, 4026.
      (b) Yin, F. ; Wang, Z. T. ; Li, Z. D. ; Li, C. Z. J. Am. Chem. Soc. 2012, 134, 10401.
      (c) Yan, H. ; Zhu, C. Sci. China: Chem. 2017, 60, 214.

    3. [3]

      Stavber, S. Molecules 2011, 16, 6432.  doi: 10.3390/molecules16086432

    4. [4]

      Greene, T. W. ; Wuts, P. G. M. in Protective Groups in Organic Synthesis, Wiley, New York, 1999, pp. 518~525.

    5. [5]

      Deniau, G.; Slawin, A. M. Z.; Lebl, T.; Chorki, F.; Issberner, J. P.; van Mourik, T.; Heygate, J. M.; Lambert, J. J.; Etherington, L. A.; Sillar, K. T.; O'Hagan, D. Chem. Biochem. 2007, 8, 2265.
       

    6. [6]

      (a) Yadav, J. S. ; Subba Reddy, B. V. ; Reddy, K. S. Synlett 2002, 468.
      (b) Mohapatra, D. K. ; Durugkar, K. A. ARKIVOC 2005, 14, 20.
      (c) Hernadez, J. N. ; Crisostomo, F. R. P. ; Martin, T. ; Martin, V. S. Eur. J. Org. Chem. 2007, 5050.
      (d) Zheng, J. L. ; Yin, B. L. ; Huang, W. M. ; Li, X. P. ; Yao, H. Q. ; Liu, Z. G. ; Zhang, J. C. ; Jiang, S. Tetrahedron Lett. 2009, 50, 5094.
      (e) Lopez-Soria, J. M. ; Perez, S. J. ; Hernandez, J. N. ; Ramirez, M. A. ; Martin, V. S. ; Padron, J. I. RSC. Adv. 2015, 5, 6647.
      (f) Walters, M. A. ; Hoem, A. B. J. Org. Chem. 1994, 59, 2645.
      (g) Hernández, J. N. ; Ramírez, M. A. ; Martín, V. S. J. Org. Chem. 2003, 68, 743.
      (h) Boyle, T. P. ; Bremner, J. B. ; Coates, J. A. ; Keller, P. A. ; Pyne, S. G. Tetrahedron 2005, 61, 7271.

    7. [7]

      (a) Hu, X. G. ; Thomas, D. S. ; Griffith, R. ; Hunter, L. Angew. Chem., Int. Ed. 2014, 53, 6176.
      (b) Hu, X. G. ; Lawer, A. ; Peterson, M. B. ; Iranmanesh, H. ; Ball, G. E. ; Hunter, L. Org. Lett. 2016, 18, 662.
      (c) Yan, N. ; Fang, Z. ; Liu, Q. Q. ; Guo, X. H. ; Hu, X. G. Org. Biomol. Chem. 2016, 14, 3469.
      (d) Yan, N. ; Lei, Z. W. ; Su, J. K. ; Liao, W. L. ; Hu, X. G. Chin. Chem. Lett. 2017, 28, 467.

    8. [8]

      Xia, J. B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494.  doi: 10.1021/ja410815u

    9. [9]

      Comparison of specific rotations was used in Ref. [11] for the same purpose.

    10. [10]

      Dey, S.; Garner, P. J. Org. Chem. 2000, 65, 7697.  doi: 10.1021/jo000983i

    11. [11]

      (a) Liu, J. J. ; Wong, C. H. Tetrahedron Lett. 2002, 43, 4037.
      (b) Shah, S. T. A. ; Singh, S. ; Guiry, P. J. J. Org. Chem. 2009, 74, 2179.

    12. [12]

      Navarre, L.; Martinez, R.; Genet, J. P.; Darses, S. J. Am. Chem. Soc. 2008, 130, 6159.  doi: 10.1021/ja710691p

    13. [13]

      Barrett, A. G. M.; Pilipauskas, D. J. Org. Chem. 1990, 55, 5170.  doi: 10.1021/jo00304a035

    14. [14]

      Adams, H.; Bawa, R. A.; Jones, S. Org. Biomol. Chem. 2006, 4, 4206.  doi: 10.1039/B610055D

    15. [15]

      Pandey, R. K.; Dagade, S. P.; Dongare, M. K.; Kumar, P. Synth. Commun. 2003, 33, 4019.  doi: 10.1081/SCC-120026337

    16. [16]

      Heller, S. T.; Sarpong, R. Org. Lett. 2010, 12, 4572.  doi: 10.1021/ol1018882

    17. [17]

      Wakasugi, K.; Iida, A.; Misaki, T.; Nishii, Y.; Tanabe, Y. Adv. Synth. Catal. 2003, 345, 1209.  doi: 10.1002/(ISSN)1615-4169

    18. [18]

      Mandal, P. K.; McMurray, J. S. J. Org. Chem. 2007, 72, 6599.  doi: 10.1021/jo0706123

    19. [19]

      Burk, M. J.; Allen, J. G. J. Org. Chem. 1997, 62, 7054.  doi: 10.1021/jo970903j

    20. [20]

      Zheng, J.; Yin, B.; Huang, W.; Li, X.; Yao, H.; Liu, Z.; Zhang, J.; Jiang, S. Tetrahedron Lett. 2009, 50, 5094.  doi: 10.1016/j.tetlet.2009.06.104

    21. [21]

      Tomita, K.; Oishi, S.; Ohno, H.; Fujii, N. Pept. Sci. 2008, 90, 503.  doi: 10.1002/bip.20968

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    4. [4]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    5. [5]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    6. [6]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    9. [9]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    10. [10]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    11. [11]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    12. [12]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    13. [13]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    14. [14]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    15. [15]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    16. [16]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    17. [17]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    18. [18]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(11)
  • Abstract views(791)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return