Citation: Bi Jili, Ma Ransong, Yang Jinhui. Synthesis of Chiral α-Amino Acid Derivatives by Asymmetric Addition of α-Imino Ester[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2553-2570. doi: 10.6023/cjoc201801035 shu

Synthesis of Chiral α-Amino Acid Derivatives by Asymmetric Addition of α-Imino Ester

  • Corresponding author: Bi Jili, bjlnxdx@126.com Yang Jinhui, yang_jh@nxu.edu.cn
  • Received Date: 25 January 2018
    Revised Date: 2 April 2018
    Available Online: 7 October 2018

    Fund Project: the National Natural Science Foundation of China 21362025Project supported by the National Natural Science Foundation of China (No. 21362025)

Figures(11)

  • The wide applications of chiral α-amino acid derivatives in the pharmaceutical and fine chemical industry field has greatly arisen the development of its synthetic methods. So far, asymmetric nucleophilic addition reaction of α-imino ester has been proven to be one of the most effective methods to synthesize chiral α-amino acid derivatives and has been focused by chemists in the field of asymmetric catalysis. The development of such method on the view of reaction types and different kinds of nucleophiles is described. Specifically, allylation reaction, arylation reactions, Mannich reactions, alkenylation reactions, alkynylation reactions and alkylation reactions are introduced, together with the associated reaction mechanisms and recent developments. Additionally, a prospect on this research field is given.
  • 加载中
    1. [1]

      (a) Salih, N.; Adams, H.; Jackson, R. J. Org. Chem. 2016, 81, 8386.
      (b) Chen, Y.-Y.; Chang, L.-T.; Chen, H.-W.; Yang, C.-Y.; Hsin, L.-W. ACS. Comb. Sci. 2017, 19, 131.
      (c) Vanda, D.; Jorda, R.; Lemrová, B.; Volná, T.; Krytšof, V.; McMaster, C.; Soural, M. ACS Comb. Sci. 2015, 17, 426.
      (d) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481.
      (e) Kazmaier, U. Angew. Chem., Int. Ed. 2005, 44, 3509.
      (f) Prabhu, G.; Narendra, N.; Pandurangaa, V.; Sureshbabu, V. V.; RSC Adv. 2015, 5, 48331.

    2. [2]

      Wei, Q.-L.; Zhang, F.; Zhao, X.-F.; Wang, C.; Xiao, J.-L.; Tang.W.-J. Org. Biomol. Chem. 2017, 15, 5468.  doi: 10.1039/C7OB01329A

    3. [3]

      (a) Tararov, V. I.; Bőrner, A. Synlett 2005, 203.
      (b) Tararov, V. I.; Kadyrov, R.; Riermeier, T. H.; Bőrner, A. Chem. Commun. 2000, 1867.
      (c) Kadyrov, R.; Riermeier, T. H.; Dingerdissen, U.; Tararov, V.; Bőrner, A. J. Org. Chem. 2003, 68, 4067.

    4. [4]

      (a) Avenoza, A.; Busto, J. H.; Peregrina, J. M.; Pérez-Fernández, M. Tetrahedron 2005, 61, 4165.
      (b) Avenoza, A.; Busto, J. H.; Canal, N.; Peregrina, J. M.; Pérez-Fernández, M. Org. Lett. 2005, 7, 3597.
      (c) Akiyama, T.; Daidouji, K.; Fuchibe, K. Org. Lett. 2003, 5, 3691.
      (d) Yao, S.; Saaby, S.; G.Hazell, R.; Johannsen, K. A. Chem.-Eur. J. 2000, 6, 2435.

    5. [5]

    6. [6]

      Eftekhari-Sis, B.; Zirak. M. Chem. Rev. 2017, 117, 8326.  doi: 10.1021/acs.chemrev.7b00064

    7. [7]

      Liu, M.; Shen, A.; Sun, X.-W.; Deng, F.; Xu, M.-H.; Lin, G.-Q. Chem. Commun. 2010, 46, 8460.  doi: 10.1039/c0cc03230a

    8. [8]

      Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67.  doi: 10.1021/ja016838j

    9. [9]

      Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem., Int. Ed. 2003, 42, 3927.  doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Ogawa, C.; Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2004, 43, 6491.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Fang, X.-M.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1999, 64, 4844.  doi: 10.1021/jo990238+

    12. [12]

      Colombo, F.; Annunziata, R.; Benaglia, M. Tetrahedron. Lett. 2007, 48, 2687.  doi: 10.1016/j.tetlet.2007.02.071

    13. [13]

      Fujita, M.; Nagano, T.; Schneider, U.; Hamada, T.; Ogawa, C.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 2914.  doi: 10.1021/ja710627x

    14. [14]

      Beenen, M. A.; Weix, D. J.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 6304.  doi: 10.1021/ja060529h

    15. [15]

      Dai, H.-X.; Lu, X.-Y. Org. Lett. 2007, 9, 3077.  doi: 10.1021/ol0711220

    16. [16]

      Ji, D.-M.; Xu, M.-H. Chem. Commun. 2010, 46, 1550.  doi: 10.1039/b914687c

    17. [17]

      Chen, J.-Y.; Lu, X.-X.; Lou, W.-Y.; Ye, Y.; Jiang, H.-F.; Zeng, W. J. Org. Chem. 2012, 77, 8541.  doi: 10.1021/jo301423e

    18. [18]

      Li, Y.; Yu, Y.-N.; Xu, M.-H. ACS Catal. 2016, 6, 661.  doi: 10.1021/acscatal.5b02403

    19. [19]

      Takechi, R.; Nishimura, T. Org. Biomol. Chem. 2015, 13, 4918.  doi: 10.1039/C5OB00431D

    20. [20]

      Zhou, B.; Li, K.-Z.; Jiang, C.-H.; Lu, Y.-X.; Hayashi, T. Adv. Synth. Catal. 2017, 359, 1.  doi: 10.1002/adsc.v359.1

    21. [21]

      Johannsen, M. Chem. Commun. 1999, 2233.

    22. [22]

      Saaby, S.; Fang, X.-M.; Gathergood, N.; Johannsen, K. A. Angew. Chem., Int. Ed. 2000, 39, 4114.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Churches, Q. I.; White, J. M.; Hutton, C. A. Org. Lett. 2011, 13, 2900.  doi: 10.1021/ol200917s

    24. [24]

      Li, Y.; Xu, M.-H. Org. Lett. 2012, 14, 2062.  doi: 10.1021/ol300581n

    25. [25]

      Sugiyama, S.; Imai, S.; Ishii, K. Tetrahedron:Asymmetry 2013, 24, 1069.  doi: 10.1016/j.tetasy.2013.07.026

    26. [26]

      Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474.  doi: 10.1021/ja973962n

    27. [27]

      Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury Ⅲ, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67.  doi: 10.1021/ja016838j

    28. [28]

      Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.  doi: 10.1021/ja9802450

    29. [29]

      Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 2507.  doi: 10.1021/ja0281840

    30. [30]

      Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7768.  doi: 10.1021/ja048607t

    31. [31]

      (a) Xie, L.; Ma, H.-L.; Li, J.-Q.; Yu, Y.; Qin, Z.-H.; Fu, B. Org. Chem. Front. 2017, 4, 1858.
      (b) Yu, J.-S.; Zhou, J. Org. Chem. Front. 2016, 3, 298.

    32. [32]

      Zhang, H.; Syed, S.; Barbas Ⅲ, C. F. Org. Lett. 2010, 12, 708.  doi: 10.1021/ol902722y

    33. [33]

      Perera, S.; Sinha, D.; Rana, N. K.; Trieu-Do, V.; Zhao, C.-G. J. Org. Chem. 2013, 78, 10947.  doi: 10.1021/jo4019304

    34. [34]

      Valero, G.; León, C. M.; Moyano, A. Asymmetric Catal. 2015, 2, 7.

    35. [35]

      Liu, X.-D.; Deng, L.-J.; Jiang, X.-X.; Yan, W.-J.; Liu, C.-L.; Wang, R. Org. Lett. 2010, 12, 876.  doi: 10.1021/ol902916s

    36. [36]

      Wu, L.; Li, G.-X.; He, M.-G.; Wang, Y.-W.; Zhao, G.; Tang, Z. Can. J. Chem. 2016, 94, 769.  doi: 10.1139/cjc-2016-0089

    37. [37]

      Tao, Z.-L.; Adele, A.; Wu, X.; Gong, L.-Z. Chin. J. Chem. 2014, 32, 969.  doi: 10.1002/cjoc.201400453

    38. [38]

      Veverková, E.; Liptáková, L.; Veverka, M.; Šebesta, R. Tetrahedron:Asymmetry 2013, 24, 548.  doi: 10.1016/j.tetasy.2013.03.016

    39. [39]

      Hernández-Toribio, J.; Arrayás, R. G.; Carretero, J. C. Chem.-Eur. J. 2010, 16, 1153.  doi: 10.1002/chem.v16:4

    40. [40]

      (a) Veverková, E.; Štrasserová, J.; Šebesta, R.; Toma, S. Tetrahedron: Asymmetry 2010, 21, 58.
      (b) Lu, N.; Fang, Y.-H.; Gao, Y.; Wei, Z.-L.; Cao, J.-G.; Liang, D.-P.; Lin, Y.-J.; Duan, H.-F. J. Org. Chem. 2018, 83, 1486.
      (c) Wang, Y.-H.; Liu, Y.-L.; Cao, Z.-Y.; Zhou, J. Asian J. Org. Chem. 2014, 3, 429.

    41. [41]

      Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2004, 43, 1679.  doi: 10.1002/(ISSN)1521-3773

    42. [42]

      Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995.  doi: 10.1002/(ISSN)1521-3773

    43. [43]

      Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583.  doi: 10.1021/jo026766u

    44. [44]

      Yang, C.-F.; Shen, C.; Wang, J.-Y.; Tian, S.-K. Org. Lett. 2012, 14, 3092.  doi: 10.1021/ol301180z

    45. [45]

      Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem.-Eur. J. 2003, 9, 2359.  doi: 10.1002/chem.200204679

    46. [46]

      Foltz, C.; Stecker, B.; Marconi, G.; Bellemin-Laponnaz, S.; Wadepohla, H.; Gade, L. H. Chem. Commun. 2005, 5115.
       

    47. [47]

      Kjærsgaard, A.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 804.  doi: 10.1039/B416294C

    48. [48]

      Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338.  doi: 10.1021/ja028782e

    49. [49]

      Ooi, T.; Kameda, M.; Fujii, J.-I.; Maruoka, K. Org. Lett. 2004, 6, 2397.  doi: 10.1021/ol049215u

    50. [50]

      Córdova, A.; Notz, W.; Zhong, G.-F.; Betancort, J. M.; Barbas Ⅲ, C. F. J. Am. Chem. Soc. 2002, 124, 1842.  doi: 10.1021/ja017270h

    51. [51]

      Wasa, M.; Liu, R. Y.; Roche, S. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2014, 136, 12872.  doi: 10.1021/ja5075163

    52. [52]

      Yu, J.-S.; Zhou, J. Org. Chem. Front. 2016, 3, 298.  doi: 10.1039/C5QO00407A

    53. [53]

      Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922.  doi: 10.1021/ja8018934

    54. [54]

      Drury Ⅲ, W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem. Soc. 1988, 120, 11006.
       

    55. [55]

      Yao, S.; Fang, X.-M.; Jørgensen, K. A. Chem. Commun. 1998, 2547.

    56. [56]

      Caplan, N. A.; Hancock, F. E.; Bulman Page, P. C.; Hutchings, G. J. Angew. Chem., Int. Ed. 2004, 43, 1685.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Liu, R.-R.; Wang, D.-J.; Wu, L.; Xiang, B.; Zhang, G.-Q.; Gao, J.-R.; Jia, Y.-X. ACS Catal. 2015, 5, 6524.  doi: 10.1021/acscatal.5b01793

    58. [58]

      Shao, Z.-H.; Wang, J.; Ding, K.; Chan, A. S. C. Adv. Synth. Catal. 2007, 349, 2375.  doi: 10.1002/(ISSN)1615-4169

    59. [59]

      Peng, F.-Z.; Shao, Z.-H.; Chan, A. S. C. Tetrahedron:Asymmetry 2010, 21, 465.  doi: 10.1016/j.tetasy.2010.02.020

    60. [60]

      Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903.  doi: 10.1002/(ISSN)1521-3773

    61. [61]

      Huang, G.-C.; Yang, J.; Zhang, X.-G. Chem. Commun. 2011, 47, 5587.  doi: 10.1039/c1cc10403a

    62. [62]

      Zhang, F.-G.; Ma, H.; Zheng, Y.; Ma, J.-A. Tetrahedron 2012, 68, 7663.  doi: 10.1016/j.tet.2012.05.086

    63. [63]

      Morisaki, K.; Sawa, M.; Nomaguchi, J.-Y.; Morimoto, H.; Takeuchi, Y.; Mashima, K.; Ohshima, T. Chem.-Eur. J. 2013, 19, 8417.  doi: 10.1002/chem.v19.26

    64. [64]

      Chiev, K.-P.; Roland, S.; Mangeney, P. Tetrahedron:Asymmetry 2002, 13, 2205.  doi: 10.1016/S0957-4166(02)00587-6

    65. [65]

      Hatano, M.; Yamashita, K.; Mizuno, M.; Ito, O.; Ishihara, K. Angew. Chem., Int. Ed. 2015, 127, 2745.  doi: 10.1002/ange.201408916

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

Metrics
  • PDF Downloads(34)
  • Abstract views(2415)
  • HTML views(578)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return