Citation: Li Zhejian, Gao Bao, Huang Hanmin. Amidation of Acid Chlorides to Primary Amides with Ammonium Salts[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1431-1436. doi: 10.6023/cjoc201801034 shu

Amidation of Acid Chlorides to Primary Amides with Ammonium Salts

  • Corresponding author: Huang Hanmin, hanmin@ustc.edu.cn
  • Received Date: 24 January 2018
    Revised Date: 6 March 2018
    Available Online: 8 June 2018

    Fund Project: the Anhui Provincial Natural Science Foundation 1708085MB28the National Natural Science Foundation of China 21702197Project supported by the National Natural Science Foundation of China (Nos. 21672199, 21702197), the CAS Interdisciplinary Innovation Team, the Fundamental Research Funds for the Central Universities and the Anhui Provincial Natural Science Foundation (No. 1708085MB28)the National Natural Science Foundation of China 21672199

Figures(1)

  • A practical amidation reaction for the synthesis of primary amides is presented, in which the simple NH4Cl was identified as a practical and convenient amine source. A series of aromatic and aliphatic acid chlorides were successfully compatible with this protocol, affording the corresponding amides in good to excellent yields, which provides a rapid and reliable approach to amides from simple starting materials. Introducing the appropriate N-methyl pyrrolidone (NMP) into the system as solvent and acid-binding reagent plays a key role to avoid the use of stoichiometric amounts of base.
  • 加载中
    1. [1]

      (a) Constable, D. J. C. ; Dunn, P. J. ; Hayler, J. D. ; Humphrey, G. R. ; Leazer, J. L. Jr. ; Linderman, R. J. ; Lorenz, K. ; Manley, J. ; Pearlman, B. A. ; Wells, A. ; Zaks, A. ; Zhang, T. Y. Green Chem. 2007, 9, 411.
      (b) Montalbetti, C. A. G. N. ; Falque, V. Tetrahedron 2005, 61, 10827.
      (c) Ghose, A. K. ; Viswanadhan, V. N. ; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55.

    2. [2]

    3. [3]

      (a) Hirano, T. ; Uehara, K. ; Kamata, K. ; Mizuno, N. J. Am. Chem. Soc. 2012, 134, 6425.
      (b) Zhang, S. ; Xu, H. ; Lou, C. ; Senan, A. M. ; Chen, Z. ; Yin, G. Eur. J. Org. Chem. 2017, 2017, 1870.
      (c) Veisi, H. ; Maleki, B. ; Hamelian, M. ; Ashrafi, S. S. RSC Adv. 2015, 5, 6365.
      (d) Marcé, P. ; Lynch, J. ; Blacker, A. J. ; Williams, J. M. J. Chem. Commun. 2016, 52, 1436.
      (e) Ramón, R. S. ; Marion, N. ; Nolan, S. P. Chem. -Eur. J. 2009, 15, 8695.

    4. [4]

      (a) Jagdmann, G. E. Jr. ; Munson, H. R. Jr. ; Gero, T. W. Synth. Commun. 1990, 20, 1203.
      (b) Griffin, J. ; Atherton, J. ; Page, M. I. J. Phys. Org. Chem. 2013, 26, 1032.
      (c) Arrizabalaga, P. ; Castan P. ; Laurent, J. -P. J. Am. Chem. Soc. 1984, 106, 4814.
      (d) Garcia, J. ; Gonzádez, J. ; Segura, R. ; Urpí, F. ; Vilarrasa, J. J. Org. Chem. 1984, 49, 3322.

    5. [5]

      Khalafi-Nezhad, A.; Zare, A.; Parhami, A.; Rad, M. N. S.; Nejabat, G. R. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182, 657.  doi: 10.1080/10426500601047214

    6. [6]

      (a) Cui, Z. ; Ling, Y. ; Li, B. ; Li, Y. ; Rui, C. ; Cui, J. ; Shi, Y. ; Yang, X. Molecules 2010, 15, 4267.
      (b) Wang, L. ; Dai, F. -Y. ; Zhu, J. ; Dong, K. -K. ; Wang, Y. -L. ; Chen, T. J. Chem. Res. 2011, 35, 313.
      (c) Srinivasan, S. ; Manisankar, P. Synth. Commun. 2010, 40, 3538.

    7. [7]

      (a) Kent, R. E. ; McElvain, S. M. Org. Synth. 1955, 3, 490.
      (b) Fisher, L. E. ; Caroon, J. M. ; Stabler, S. R. ; Lundberg, S. ; Zaidi, S. ; Sorensen, C. M. ; Sparacino, M. L. ; Muchowski, J. M. Can. J. Chem. 1994, 72, 142.
      (c) Keurulainen, L. ; Heiskari, M. ; Nenonen, S. ; Nasereddin, A. ; Kopelyanskiy, D. ; Leino, T. O. ; Yli-Kauhaluoma, J. ; Jaffe, C. L. ; Kiuru, P. Med. Chem. Commun. 2015, 6, 1673.
      (d) Fǎrcasiu, D. ; Jähme, J. ; Rüchardt, C. J. Am. Chem. Soc. 1985, 107, 5717.

    8. [8]

      (a) Green, R. A. ; Hartwig, J. F. Org. Lett. 2014, 16, 4388.
      (b) Kim, J. ; Chang, S. Chem. Commun. 2008, 3052.
      (c) Suresh, A. S. ; Baburajan, P. ; Ahmed, M. Tetrahedron Lett. 2015, 56, 4864.
      (d) Wu, X. ; Wannberg, J. ; Larhed, M. Tetrahedron 2006, 62, 4665.

    9. [9]

      (a) Della, E. W. ; Kasum, B. ; Kirkbride, K. P. J. Am. Chem. Soc. 1987, 109, 2746.
      (b) Ma, Y. ; Stivala, C. E. ; Wright, A. M. ; Hayton, T. ; Liang, J. ; Kersztes, I. ; Lobkovsky, E. ; Collum, D. B. ; Zakarian, A. J. Am. Chem. Soc. 2013, 135, 16853.
      (c) Sakharov, S. G. ; Kovalev, V. V. ; Gorbunova, Y. E. ; Tokmakov, G. P. ; Skabitskii, I. V. ; Kokunov, Y. V. Russ. J. Coord. Chem. 2017, 43, 75.
      (d) Caner, J. ; Vilarrasa, J. J. Org. Chem. 2010, 75, 4880.

    10. [10]

      (a) Gao, B. ; Zhang, G. ; Zhou, X. ; Huang, H. Chem. Sci. 2018, 9, 380.
      (b) Zhang, G. ; Ji, X. ; Yu, H. ; Yang, L. ; Jiao, P. ; Huang, H. Tetrahedron Lett. 2016, 57, 383.
      (c) Hu, Y. ; Shen, Z. ; Huang, H. ACS Catal. 2016, 6, 6785.
      (d) Zhang, G. ; Gao, B. ; Huang, H. Angew. Chem., Int. Ed. 2015, 54, 7657.

    11. [11]

      Liu, J.; Li, H.; Spannenberg, A.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 13544.  doi: 10.1002/anie.201605104

    12. [12]

      (a) Yamada, K. ; Karuo, Y. ; Tsukada, Y. ; Kunishima, M. Chem. -Eur. J. 2016, 22, 14042.
      (b) Liu, H. ; Laurenczy, G. ; Yan, N. ; Dyson, P. J. Chem. Commun. 2014, 50, 341.
      (c) Song, Q. ; Feng, Q. ; Yang, K. Org. Lett. 2014, 16, 624.
      (d) Ma, X. -Y. ; He, Y. ; Hu, Y. -L. ; Lu, M. Tetrahedron Lett. 2012, 53, 449.
      (e) Freudenreich, C. ; Samama, J. -P. ; Biellmann, J. -F. J. Am. Chem. Soc. 1984, 106, 3344.
      (f) Khrustalev, V. N. ; Sandhu, B. ; Bentum, S. ; Fonari, A. ; Krivoshein, A. V. ; Timofeeva, T. V. Cryst. Growth Des. 2014, 14, 3360.
      (g) Blanchette, J. A. ; Brown, E. V. J. Am. Chem. Soc. 1952, 74, 1066.
      (h) Movassagh, B. ; Rezaei, N. New J. Chem. 2015, 39, 7988.
      (i) Mol, M. D. Recl. Trav. Chim. Pays-Bas 1907, 26, 373.
      (j) Martínez-Asencio, A. ; Yus, M. ; Ramón, D. J. Tetrahedron 2012, 68, 3948.

  • 加载中
    1. [1]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    2. [2]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    3. [3]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    4. [4]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    7. [7]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    8. [8]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    9. [9]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    10. [10]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    11. [11]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    12. [12]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    13. [13]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    14. [14]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    15. [15]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    16. [16]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    17. [17]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    20. [20]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

Metrics
  • PDF Downloads(72)
  • Abstract views(2655)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return