Citation: Yang Rui, Ma Yanni, Huang Ting, Xie Wei, Zhang Xia, Huang Guoshuang, Liu Xiaodong. Synthesis and Antifungal Activities of 4-Thioquinoline Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2143-2150. doi: 10.6023/cjoc201801024 shu

Synthesis and Antifungal Activities of 4-Thioquinoline Compounds

  • Corresponding author: Yang Rui, yangrui15@cdut.edu.cn
  • Received Date: 16 January 2018
    Revised Date: 21 April 2018
    Available Online: 14 August 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 31601670), the Foundation of Department of Education of Sichuan Province (No. 18ZB0079) and the Youth Science Foundation of Chengdu University of Technology (No. 2017QJ02)the Youth Science Foundation of Chengdu University of Technology 2017QJ02the National Natural Science Foundation of China 31601670the Foundation of Department of Education of Sichuan Province 18ZB0079

Figures(1)

  • Based on the scaffold of 4-substituted quinoline, twenty-four 4-thioquinoline compounds were designed and synthesized by molecular hybridization. Their structures were identified by 1H NMR, 13C NMR and HRMS. Meanwhile, all target compounds were evaluated for antifungal activities. The results indicated that the majority of target compounds displayed some activity against each of the fungi. Among them, 4-(ethylthio)-2-phenylquinoline (4a), 4-(isopropylthio)-2-phenylquinoline (4c) and 4-(allylthio)-2-phenylquinoline (4h) were more potent than others, whose inhibition rates against some fungi were comparable to the positive drug azoxystrobin. The structure-activity relationship (SAR) showed that different substituents on 4-position could significantly affect activities. Generally, the presence of aliphatic group could be more beneficial to antifungal activity than aromatic group, and the activity weakened with an increase of steric hindrance. Moreover, the kinds and positions of substituents on the aromatic ring had little or negative effects on the activity.
  • 加载中
    1. [1]

      Fostel, J. M.; Lartey, P. A. Drug Discovery Today 2000, 5, 25.  doi: 10.1016/S1359-6446(99)01430-0

    2. [2]

      Jampilek, J.; Dolezal, M.; Kunes, J.; Buchta, V.; Silva, L.; Kralova, K. Med. Chem. 2005, 1, 591.  doi: 10.2174/157340605774598108

    3. [3]

      Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44, 2374.  doi: 10.1021/jm0100335

    4. [4]

      Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B. A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Rao, V. J. Bioorg. Med. Chem. 2006, 14, 4600.  doi: 10.1016/j.bmc.2006.02.020

    5. [5]

      Cheng, H.; Wang, W. Q.; Huang, L.; Cui, P.; Wu, Q. Y. Chin. J. Org. Chem. 2016, 36, 1065 (in Chinese).
       

    6. [6]

      Gao, Z. M.; Wang, T. T.; Li, S. Z.; Wan, H. Q.; Wang, G.; Wu, Y. B.; Deng, X. Q.; Song, M. X. Chin. J. Org. Chem. 2016, 36, 2484 (in Chinese).
       

    7. [7]

      Valkó, K. J. Chromatogr. A 2004, 1037, 299.  doi: 10.1016/j.chroma.2003.10.084

    8. [8]

      Ingrid, J. C.; Francoise, B. V.; Mustofa, V.; Alexis, S.; Edouard, M.; Michelem, F.; Isabelle, F. Planta Med. 2002, 68, 68.  doi: 10.1055/s-2002-19869

    9. [9]

      Urbina, J. M.; Cortés, J. C. G.; Palma, A.; López, S. N.; Zacchino, S. A.; Enrizd, D.; Ribasb, J. C.; Kouznetzova, V. V. Bioorg. Med. Chem. 2000, 8, 691.  doi: 10.1016/S0968-0896(00)00003-1

    10. [10]

      Jain, R.; Vaitilingam, B.; Nayyar, A.; Palde, P. B. Bioorg. Med. Chem. Lett. 2003, 13, 1051.  doi: 10.1016/S0960-894X(03)00074-X

    11. [11]

      Du, D.; Fang, J. X. Chin. J. Org. Chem. 2007, 27, 1318 (in Chinese).
       

    12. [12]

      Chen, G. M.; Wu, Z. B.; Hu, D. Y.; Yang, S.; Bao, W. Y. Fine Chem. Intermed. 2011, 41, 1 (in Chinese).

    13. [13]

      Tian, J. F.; Liu, J.; Sun, X. F.; Chai, B. S.; Liu, C. L. Agrochemicals 2011, 50, 552 (in Chinese).  doi: 10.3969/j.issn.1006-0413.2011.08.002

    14. [14]

      Zhao, J.; Yuan, J. Z.; Zhou, H. J.; Gao, Y.; Liu, D. Pharm. Today 2014, 24, 306 (in Chinese).

    15. [15]

      Zhang, C. R.; Wang, L.; Ge, Y. L.; Ju, X. L. Chin. J. Org. Chem. 2007, 27, 1432 (in Chinese).
       

    16. [16]

      Shalaby, A. A.; El-Khamry, A. A.; Shiba, S. A. Arch. Pharmacal Res. 2000, 333, 365.

    17. [17]

      Chen, W.; Chen, Q.; Wu, Q. Y.; Yang, G. F. Chin. J. Org. Chem. 2005, 25, 1477 (in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.11.028
       

    18. [18]

      Xue, W.; Song, B. A.; Yang, S.; Hu, D. Y.; Liu, G.; Liu, P. S.; Zhang, P. Q.; Jin, L. H.; Zhang, S. M. Fine Chem. Intermed. 2006, 36, 16 (in Chinese).

    19. [19]

      Xu, G. F.; Song, B. A.; Bhadury, P. S.; Yang, S.; Zhang, P. Q.; Jin, L. H.; Xue, W.; Hu, D. Y.; Lu, P. Bioorg. Med. Chem. 2007, 15, 3768.  doi: 10.1016/j.bmc.2007.03.037

    20. [20]

      Liu, G.; Liu, C. P.; Ji, C. N.; Sun, L.; Wen, Q. W. Chin. J. Org. Chem. 2008, 28, 525 (in Chinese).
       

    21. [21]

      Ma, Y.; Liu, F.; Yan, K.; Song, B. A.; Yang, S.; Hu, D. Y.; Jin, L. H.; Xue, W. Chin. J. Org. Chem. 2008, 28, 1268 (in Chinese).
       

    22. [22]

      Zhang, Y. M. S. Thesis, Guizhou University, Guiyang, 2010 (in Chinese).

    23. [23]

      Jin, Q. D. M. S. Thesis, Shandong Agricultural University, Taian, 2015 (in Chinese).

    24. [24]

      Boateng, C. A.; Zhu, X. Y.; Jacob, M. R.; Khan, S. I.; Walker, L. A.; Ablordeppey, S. Y. Eur. J. Med. Chem. 2011, 46, 1789.  doi: 10.1016/j.ejmech.2011.02.034

    25. [25]

      Boateng, C. A.; Eyunni, S. V. K.; Zhu, X. Y.; Etukala, J. R.; Bricker, B. A.; Ashfaq, M. K.; Jacob, M. R.; Khan, S. I.; Walker, L. A.; Ablordeppey, S. Y. Bioorg. Med. Chem. 2011, 19, 458.  doi: 10.1016/j.bmc.2010.11.008

    26. [26]

      Bolden, S.; Zhu, X. Y.; Etukala, J. R.; Boateng, C.; Mazu, T.; Flores-Rozas, H.; Jacob, M, R.; Khan, S. I.; Walker, L. A.; Ablordeppey, S. Y. Eur. J. Med. Chem. 2013, 70, 130.  doi: 10.1016/j.ejmech.2013.09.044

    27. [27]

      Bolden, S.; Boateng, C. A.; Zhu, X. Y.; Etukala, J. R.; Eyunni, S. K.; Jacob, M. R.; Khan, S. I.; Ablordeppey, S. Y. Bioorg. Med. Chem. 2013, 21, 7194.  doi: 10.1016/j.bmc.2013.08.043

    28. [28]

      Marques, E. F.; Bueno, M. A.; Duarte, P. D.; Silva, L. R.; Martinelli, A. M.; dos Santos, C. Y.; Severino, R. P.; Brömme, D.; Vieira, P. C.; Corrêa, A. G. Eur. J. Med. Chem. 2012, 54, 10.  doi: 10.1016/j.ejmech.2012.04.002

    29. [29]

      Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2007, 72, 7968.  doi: 10.1021/jo701384n

    30. [30]

      Ding, D. R.; Li, X.; Wang, X.; Du, Y. L.; Shen, J. K. Tetrahedron Lett. 2006, 47, 6997.  doi: 10.1016/j.tetlet.2006.07.117

    31. [31]

      Rocha, D. H. A.; Pinto, D. C. G. A.; Silva, A. M. S. Tetrahedron 2015, 71, 7717.  doi: 10.1016/j.tet.2015.07.058

    32. [32]

      Xu, G. F.; Song, B. A.; Bhadury, P. S.; Yang, S.; Zhang, P. Q.; Jin, L. H.; Xue, W.; Hu, D. Y.; Lu, P. Bioorg. Med. Chem. 2007, 15, 3768.  doi: 10.1016/j.bmc.2007.03.037

    33. [33]

      Yang, R.; Gao, Z. F.; Zhao, J. Y.; Li, W. B.; Zhou, L.; Miao, F. J. Agric. Food Chem. 2015, 63, 1906.  doi: 10.1021/jf505609z

    34. [34]

      Nahide, P. D.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2017, 58, 279.  doi: 10.1016/j.tetlet.2016.11.093

    35. [35]

      John, H.; Wunsche, E. J. Prakt. Chem. (Leipzig) 1928, 119, 49.  doi: 10.1002/prac.19281190103

    36. [36]

      Cuny, G. D.; Robin, M.; Ulyanova, N. P.; Patnaik, D.; Pique, V.; Casano, G.; Liu, J. F.; Lin, X.; Xian, J.; Glicksman, M. A.; Stein, R. L.; Higgins, J. M. Bioorg. Med. Chem. Lett. 2010, 20, 3491.  doi: 10.1016/j.bmcl.2010.04.150

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    9. [9]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    14. [14]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    15. [15]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    16. [16]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    17. [17]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

Metrics
  • PDF Downloads(15)
  • Abstract views(1799)
  • HTML views(341)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return