Citation: Zhao Wenjiao, Sun Dequn. Novel Drug Development Process of Anti-Alzheimer Targeted to Glycogen Synthase Kinase-3[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1596-1607. doi: 10.6023/cjoc201801022 shu

Novel Drug Development Process of Anti-Alzheimer Targeted to Glycogen Synthase Kinase-3

  • Corresponding author: Sun Dequn, dequn.sun@sdu.edu.cn
  • Received Date: 16 January 2018
    Revised Date: 26 March 2018
    Available Online: 12 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 81773560)the National Natural Science Foundation of China 81773560

Figures(16)

  • Alzheimer's disease is the leading cause of dementia, which can endanger devastating damage to memory and cognition of the elderly and eventually lead to death. Over expression of glycogen synthase kinase-3 (GSK-3) is closely related to the development and progression of Alzheimer's disease, and has become a hot field for the development of therapies for Alzheimer's disease. The GSK-3 inhibitors reported in recent five years, mainly including ATP competitive inhibitors, non-ATP competitive inhibitors, substrate competitive inhibitors, allosteric inhibitors, irreversible inhibitors are summarized and natural products, furthermore, the source, chemical structure and mechanism about GSK-3 inhibitors are introduced. Research prospects in this field are also discussed.
  • 加载中
    1. [1]

      Ye, Q.; Li, H. L.; Li, J. J. J. Clin. Psychiatry 2015, 25, 46 (in Chinese).
       

    2. [2]

      Zhang, W.; Huang, X. L.; Zhang, F. X. J. Int. Intensive Med. 2017, 23, 177 (in Chinese).
       

    3. [3]

      Ji, K.Y.; Ma, W. L.; Zheng, W. L. Acta Anat. Sin. 2015, 46, 164 (in Chinese).
       

    4. [4]

      Prince, M. ; Wimo, A. ; Guerchet, M. ; Ali, G. C. ; Wu, Y. T. ; Prina, M. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends, Alzheimer's Disease International, London, 2015, Chapter 1.

    5. [5]

      Jarrett, J. T.; Berger, E. P.; Lansbury Jr, P. T. Biochemistry 1993, 32, 4693.  doi: 10.1021/bi00069a001

    6. [6]

      Herrup, K. Nat. Neurosci. 2015, 18, 794.  doi: 10.1038/nn.4017

    7. [7]

      Walsh, D. M.; Klyubin, I.; Fadeeva, J. V.; Cullen, W. K.; Anwyl, R.; Wolfe, M. S.; Rowan, M. J.; Selkoe, D. J. Nature 2002, 416, 535.  doi: 10.1038/416535a

    8. [8]

      Ricciarelli, R.; Fedele, E. Curr. Neuropharmacol. 2017, 15, 926.
       

    9. [9]

      http://www.sciencemag.org/.

    10. [10]

      Mccubrey, J. A.; Steelman, L. S.; Bertrand, F. E.; Davis, N. M.; Sokolosky, M.; Abrams, S. L.; Montalto, G.; D'Assoro, A. B.; Libra, M.; Nicoletti, F. Oncotarget 2014, 5, 2881.
       

    11. [11]

      Cormier, K. W.; Woodgett, J. R. F1000Research 2017, 6, 167.  doi: 10.12688/f1000research

    12. [12]

      Hoeflich, K. P.; Luo, J.; Rubie, E. A.; Tsao, M.-S.; Jin, O.; Woodgett, J. R. Nature 2000, 406, 86.  doi: 10.1038/35017574

    13. [13]

      Terwel, D.; Muyllaert, D.; Dewachter, I.; Borghgraef, P.; Croes, S.; Devijver, H.; Van Leuven, F. Am. J. Pathol. 2008, 172, 786.  doi: 10.2353/ajpath.2008.070904

    14. [14]

      Beurel, E.; Grieco, S. F.; Jope, R. S. Pharmacol. Ther. 2015, 148, 114.  doi: 10.1016/j.pharmthera.2014.11.016

    15. [15]

      Hong, M.; Chen, D. C.; Klein, P. S.; Lee, V. M. J. Biol. Chem. 1997, 272, 25326.  doi: 10.1074/jbc.272.40.25326

    16. [16]

      Cohen, P.; Goedert, M. Nat. Rev. Drug Discovery 2004, 3, 479.  doi: 10.1038/nrd1415

    17. [17]

      Moralesgarcia, J. A.; Lunamedina, R.; Alonsogil, S.; Sanzsancristobal, M.; Palomo, V.; Gil, C.; Santos, A.; Martinez, A.; Perezcastillo, A. ACS Chem. Neurosci. 2012, 3, 963.  doi: 10.1021/cn300110c

    18. [18]

      Meijer, L.; Thunnissen, A.-M. W. H.; White, A. W.; Garnier, M.; Nikolic, M.; Tasi, L.-H.; Walter, J.; Cleverley, K. E.; Salinas, P. C.; Wu, Y.-Z.; Biernat, J.; Mandelkow, E.-M.; Kim, S.-H.; Pettie, G. R. Chem. Biol. 2000, 7, 51.  doi: 10.1016/S1074-5521(00)00063-6

    19. [19]

      Leost, M.; Schultz, C.; Link, A.; Wu, Y. Z.; Biernat, J.; Mandelkow, E. M.; Bibb, J. A.; Snyder, G. L.; Greengard, P.; Zaharevitz, D. W. Eur. J. Biochem. 2000, 267, 5983.  doi: 10.1046/j.1432-1327.2000.01673.x

    20. [20]

      Meijer, L.; Skaltsounis, A. L.; Magiatis, P.; Polychronopoulos, P.; Knockaert, M.; Leost, M.; Ryan, X. P.; Vonica, C. A.; Brivanlou, A.; Dajani, R. Chem. Biol. 2003, 10, 1255.  doi: 10.1016/j.chembiol.2003.11.010

    21. [21]

      Toledo, L. M.; Lydon, N. B. Structure 1997, 5, 1551.  doi: 10.1016/S0969-2126(97)00304-3

    22. [22]

      Witherington, J.; Bordas, V.; Gaiba, A.; Naylor, A.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Takle, A. K.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 3059.  doi: 10.1016/S0960-894X(03)00646-2

    23. [23]

      Zhang, H. C.; Ye, H.; Conway, B. R.; Derian, C. K.; Addo, M. F.; Kuo, G. H.; Hecker, L. R.; Croll, D. R.; Li, J.; Westover, L. ChemInform 2004, 35, 3245.

    24. [24]

      Olesen, P. H.; Sørensen, A. R.; Ursø, B.; Kurtzhals, P.; Bowler, A. N.; Ehrbar, U.; Hansen, B. F. J. Med. Chem. 2003, 46, 3333.  doi: 10.1021/jm021095d

    25. [25]

      Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.; Saunders, M.; Slingsby, B. P.; Stacey, R.; Ward, R. W. Bioorg. Med. Chem. Lett. 2001, 11, 635.  doi: 10.1016/S0960-894X(00)00721-6

    26. [26]

      Monte, F. L.; Kramer, T.; Gu, J.; Anumala, U. R.; Marinelli, L.; La, P. V.; Novellino, E.; Franco, B.; Demedts, D.; Van, L. F. J. Med. Chem. 2012, 55, 4407.  doi: 10.1021/jm300309a

    27. [27]

      Zou, H.; Zhou, L.; Li, Y.; Cui, Y.; Zhong, H.; Pan, Z.; Yang, Z.; Quan, J. J. Med. Chem. 2010, 53, 994.  doi: 10.1021/jm9013373

    28. [28]

      Khanfar, M. A.; Hill, R. A.; Kaddoumi, A.; Sayed, K. A. E. J. Med. Chem. 2010, 53, 8534.  doi: 10.1021/jm100941j

    29. [29]

      Rochais, C.; Duc, N. V.; Lescot, E.; Sopkova-de Oliveira Santos, J.; Bureau, R.; Meijer, L.; Dallemagne, P.; Rault, S. Eur. J. Med. Chem. 2009, 44, 708.  doi: 10.1016/j.ejmech.2008.05.011

    30. [30]

      Yue, H.; Lu, F.; Shen, C.; Quan, J.-M. Bioorg. Chem. 2015, 61, 21.  doi: 10.1016/j.bioorg.2015.05.009

    31. [31]

      Sivaprakasam, P.; Han, X.; Civiello, R. L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H. A.; Ahmed, N.; Szapiel, N.; Newitt, J. A. Bioorg. Med. Chem. Lett. 2015, 25, 1856.  doi: 10.1016/j.bmcl.2015.03.046

    32. [32]

      Luo, G.; Chen, L.; Burton, C. R.; Xiao, H.; Sivaprakasam, P.; Krause, C. M.; Cao, Y.; Liu, N.; Lippy, J.; Clarke, W. J. J. Med. Chem. 2016, 59, 1041.  doi: 10.1021/acs.jmedchem.5b01550

    33. [33]

      (a) Ye, Q. ; Li, M. ; Zhou, Y. ; Pang, T. ; Xu, L. ; Cao, J. ; Han, L. ; Li, Y. ; Wang, W. ; Gao, J. Molecules 2013, 18, 5498.
      (b) Ye, Q. ; Shen, Y. ; Zhou, Y. ; Lv, D. ; Gao, J. ; Li, J. ; Hu, Y. Eur. J. Med. Chem. 2013, 68, 361.

    34. [34]

      Uehara, F.; Shoda, A.; Aritomo, K.; Fukunaga, K.; Watanabe, K.; Ando, R.; Shinoda, M.; Ueno, H.; Kubodera, H.; Sunada, S.; Saito, K.-I.; Kaji, T.; Asano, S.; Eguchi, J.; Yuki, S.; Tanaka, S.; Yoneyama, Y.; Niwa, T. Bioorg. Med. Chem. Lett. 2013, 23, 6928.  doi: 10.1016/j.bmcl.2013.09.021

    35. [35]

      Fukunaga, K.; Uehara, F.; Aritomo, K.; Shoda, A.; Hiki, S.; Okuyama, M.; Usui, Y.; Watanabe, K.; Yamakoshi, K.; Kohara, T.; Hanano, T.; Tanaka, H.; Tsuchiya, S.; Sunada, S.; Saito, K.-I.; Eguchi, J.; Yuki, S.; Asano, S.; Tanaka, S.; Mori, A.; Yamagami, K.; Baba, H.; Horikawa, T.; Fujimura, M. Bioorg. Med. Chem. Lett. 2013, 23, 6933.  doi: 10.1016/j.bmcl.2013.09.020

    36. [36]

      Fukunaga, K.; Sakai, D.; Watanabe, K.; Nakayama, K.; Kohara, T.; Tanaka, H.; Sunada, S.; Nabeno, M.; Okamoto, M.; Saito, K.-I.; Eguchi, J.; Mori, A.; Tanaka, S.; Inazawa, K.; Horikawa, T. Bioorg. Med. Chem. Lett. 2015, 25, 1086.  doi: 10.1016/j.bmcl.2015.01.005

    37. [37]

      Usui, Y.; Uehara, F.; Hiki, S.; Watanabe, K.; Tanaka, H.; Shouda, A.; Yokoshima, S.; Aritomo, K.; Adachi, T.; Fukunaga, K.; Sunada, S.; Nabeno, M.; Saito, K.-I.; Eguchi, J.; Yamagami, K.; Asano, S.; Tanaka, S.; Yuki, S.; Yoshii, N.; Fujimura, M.; Horikawa, T. Bioorg. Med. Chem. Lett. 2017, 27, 3726.  doi: 10.1016/j.bmcl.2017.06.078

    38. [38]

      Kohara, T.; Nakayama, K.; Watanabe, K.; Kusaka, S.; Sakai, D.; Tanaka, H.; Fukunaga, K.; Sunada, S.; Nabeno, M.; Saito, K.-I.; Eguchi, J.; Mori, A.; Tanaka, S.; Bessho, T.; Takiguchi-Hayashi, K.; Horikawa, T. Bioorg. Med. Chem. Lett. 2017, 27, 3733.  doi: 10.1016/j.bmcl.2017.06.077

    39. [39]

      Coffman, K.; Brodney, M.; Cook, J.; Lanyon, L.; Pandit, J.; Sakya, S.; Schachter, J.; Tsenglovering, E.; Wessel, M. Bioorg. Med. Chem. Lett. 2011, 21, 1429.  doi: 10.1016/j.bmcl.2011.01.017

    40. [40]

      Chun, K.; Park, J. S.; Lee, H. C.; Kim, Y. H.; Ye, I. H.; Kim, K. J.; Ku, I. W.; Noh, M. Y.; Cho, G. W.; Kim, H. Bioorg. Med. Chem. Lett. 2013, 23, 3983.  doi: 10.1016/j.bmcl.2013.03.119

    41. [41]

      Shin, D.; Lee, S.-C.; Heo, Y.-S.; Lee, W.-Y.; Cho, Y.-S.; Kim, Y. E.; Hyun, Y.-L.; Cho, J. M.; Lee, Y. S.; Ro, S. Bioorg. Med. Chem. Lett. 2007, 17, 5686.  doi: 10.1016/j.bmcl.2007.07.056

    42. [42]

      Lee, S.-C.; Shin, D.; Cho, J. M.; Ro, S.; Suh, Y.-G. Bioorg. Med. Chem. Lett. 2012, 22, 1891.  doi: 10.1016/j.bmcl.2012.01.065

    43. [43]

      Saitoh, M.; Kunitomo, J.; Kimura, E.; Iwashita, H.; Uno, Y.; Onishi, T.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C. D.; Dougan, D. R.; Textor, G. P.; Snell, G. P.; Takizawa, M.; Itoh, F.; Kori, M. J. Med. Chem. 2009, 52, 6270.  doi: 10.1021/jm900647e

    44. [44]

      Monte, F. L.; Kramer, T.; Gu, J.; Brodrecht, M.; Pilakowski, J.; Fuertes, A.; Dominguez, J. M.; Plotkin, B.; Eldar-Finkelman, H.; Schmidt, B. Eur. J. Med. Chem. 2013, 61, 26.  doi: 10.1016/j.ejmech.2012.06.006

    45. [45]

      Ombrato, R.; Cazzolla, N.; Mancini, F.; Mangano, G. J. Chem. Inf. Model. 2015, 55, 2540.  doi: 10.1021/acs.jcim.5b00486

    46. [46]

      Ghribi, O.; Herman, M. M.; Savory, J. J. Neurosci. Res. 2003, 71, 853.  doi: 10.1002/(ISSN)1097-4547

    47. [47]

      Hampel, H.; Ewers, M.; Bürger, K.; Annas, P.; Mörtberg, A.; Bogstedt, A.; Frölich, L.; Schröder, J.; Schönknecht, P.; Riepe, M. W. J. Clin. Psychiatry 2009, 70, 922.  doi: 10.4088/JCP.08m04606

    48. [48]

      Frisch, S.; Grünwald, F.; Friedrichs, B. Int. Psychogeriatr. 2017, 29, 1747.  doi: 10.1017/S1041610217000540

    49. [49]

      Macdonald, A.; Briggs, K.; Poppe, M.; Higgins, A.; Velayudhan, L.; Lovestone, S. Int. J. Geriatr. Psychiatry 2008, 23, 704.  doi: 10.1002/gps.v23:7

    50. [50]

      Tolosa, E.; Litvan, I.; Höglinger, G. U.; Burn, D.; Lees, A.; Andrés, M. V.; Gómez-Carrillo, B.; León, T.; del Ser, T. Mov. Disord. 2014, 29, 470.  doi: 10.1002/mds.25824

    51. [51]

      Del, S. T.; Steinwachs, K. C.; Gertz, H. J.; Andrés, M. V.; Gómezcarrillo, B.; Medina, M.; Vericat, J. A.; Redondo, P.; Fleet, D.; León, T. J. Alzheimer's Dis. 2013, 33, 205.
       

    52. [52]

      Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J. O.; Huppertz, H. J.; Calero, M.; Andrés, M. V.; Gómezcarrillo, B.; León, T. J. Alzheimer's Dis. 2015, 45, 75.  doi: 10.3233/JAD-141959

    53. [53]

      Zhang, P.; Hu, H.-R.; Huang, Z.-H.; Lei, J.-Y.; Chu, Y.; Ye, D.-Y. Bioorg. Med. Chem. Lett. 2012, 22, 7232.  doi: 10.1016/j.bmcl.2012.09.043

    54. [54]

      Liang, Z.; Zhang, B.; Su, W. W.; Williams, P. G.; Li, Q. X. ACS Chem. Neurosci. 2016, 7, 912.  doi: 10.1021/acschemneuro.6b00059

    55. [55]

      Avrahami, L.; Licht-Murava, A.; Eisenstein, M.; Eldar-Finkelman, H. Biochim. Biophys. Acta 2013, 1834, 1410.  doi: 10.1016/j.bbapap.2013.01.016

    56. [56]

      Hamann, M.; Alonso, D.; Martín-Aparicio, E.; Fuertes, A.; Pérez-Puerto, M. J.; Castro, A.; Morales, S.; Navarro, M. L.; del Monte-Millán, M.; Medina, M.; Pennaka, H.; Balaiah, A.; Peng, J.; Cook, J.; Wahyuono, S.; Martínez, A. J. Nat. Prod. 2007, 70, 1397.  doi: 10.1021/np060092r

    57. [57]

      Tapia-Rojas, C.; Schüller, A.; Lindsay, Carolina B.; Ureta, Roxana C.; Mejías-Reyes, C.; Hancke, J.; Melo, F.; Inestrosa, Nibaldo, C. Biochem. J. 2015, 466, 415.  doi: 10.1042/BJ20140207

    58. [58]

      Palomo, V.; Perez, D. I.; Perez, C.; Morales-Garcia, J. A.; Soteras, I.; Alonso-Gil, S.; Encinas, A.; Castro, A.; Campillo, N. E.; Perez-Castillo, A.; Gil, C.; Martinez, A. J. Med. Chem. 2012, 55, 1645.  doi: 10.1021/jm201463v

    59. [59]

      Licht-Murava, A.; Paz, R.; Vaks, L.; Avrahami, L.; Plotkin, B.; Eisenstein, M.; Eldar-Finkelman, H. Sci. Signaling 2016, 9, ra110.  doi: 10.1126/scisignal.aah7102

    60. [60]

      Bidon-Chanal, A.; Fuertes, A.; Alonso, D.; Pérez, D. I.; Martínez, A.; Luque, F. J.; Medina, M. Eur. J. Med. Chem. 2013, 60, 479.  doi: 10.1016/j.ejmech.2012.12.014

    61. [61]

      Pérez, M.; Pérez, D. I.; Martínez, A.; Castro, A.; Gómez, G.; Fall, Y. Chem. Commun. 2009, 3252.
       

    62. [62]

      Palomo, V.; Soteras, I.; Perez, D. I.; Perez, C.; Gil, C.; Campillo, N. E.; Martinez, A. J. Med. Chem. 2011, 54, 8461.  doi: 10.1021/jm200996g

    63. [63]

      Palomo, V.; Perez, D. I.; Roca, C.; Anderson, C.; Rodríguez-Muela, N.; Perez, C.; Morales-Garcia, J. A.; Reyes, J. A.; Campillo, N. E.; Perez-Castillo, A. M.; Rubin, L. L.; Timchenko, L.; Gil, C.; Martinez, A. J. Med. Chem. 2017, 60, 4983.  doi: 10.1021/acs.jmedchem.7b00395

    64. [64]

      Perez, D. I.; Conde, S.; Pérez, C.; Gil, C.; Simon, D.; Wandosell, F.; Moreno, F. J.; Gelpí, J. L.; Luque, F. J.; Martínez, A. Bioorg. Med. Chem. 2009, 17, 6914.  doi: 10.1016/j.bmc.2009.08.042

    65. [65]

      Perez, D. I.; Palomo, V.; Pérez, C.; Gil, C.; Dans, P. D.; Luque, F. J.; Conde, S.; Martínez, A. J. Med. Chem. 2011, 54, 4042.  doi: 10.1021/jm1016279

    66. [66]

      Lu, F.; Li, X.; Li, W.; Wei, K.; Yao, Y.; Zhang, Q.; Liang, X.; Zhang, J. Acta Biochim. Biophys. Sin. 2017, 49, 722.  doi: 10.1093/abbs/gmx059

    67. [67]

      Wang, D.; Li, S.; Chen, J.; Liu, L.; Zhu, X. Cell. Mol. Neurobiol. 2017, 37, 695.  doi: 10.1007/s10571-016-0405-9

    68. [68]

      (a) Di Martino, R. M. C. ; De Simone, A. ; Andrisano, V. ; Bisignano, P. ; Bisi, A. ; Gobbi, S. ; Rampa, A. ; Fato, R. ; Bergamini, C. ; Perez, D. I. ; Martinez, A. ; Bottegoni, G. ; Cavalli, A. ; Belluti, F. J. Med. Chem. 2016, 59, 531.
      (b) Tang, M. ; Taghibiglou, C. J. Alzheimer's Dis. 2017, 58, 1003.

    69. [69]

      Hawkes, N. BMJ[Br. Med. J.] 2018, 360, DOI:10.1136/bmj.k122.  doi: 10.1136/bmj.k122

    70. [70]

      Hawkes, N. BMJ[Br. Med. J.] 2017, 356, DOI:10.1136/bmj.j845.  doi: 10.1136/bmj.j845

  • 加载中
    1. [1]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    6. [6]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    9. [9]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(18)
  • Abstract views(1606)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return