Citation: Hong Mei, Min Jie, Wang Shifa. Research Progress of the Synthesis, Immobilization Bis(perfluoro-alkylsulfonyl)imide-Based Complexes and Application in Heterogeneous Catalysis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1907-1916. doi: 10.6023/cjoc201801013 shu

Research Progress of the Synthesis, Immobilization Bis(perfluoro-alkylsulfonyl)imide-Based Complexes and Application in Heterogeneous Catalysis

  • Corresponding author: Hong Mei, hongmei-613@njfu.edu.cn Wang Shifa, wangshifa65@126.com
  • Received Date: 8 January 2018
    Revised Date: 30 March 2018
    Available Online: 3 August 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20140969the Open Fund of Jiangsu Key Laboratory of Biomass Energy and Materials JSBEM201603Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20140969), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Open Fund of Jiangsu Key Laboratory of Biomass Energy and Materials (No. JSBEM201603)the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPD

Figures(13)

  • Traditional liquid acid catalysts have environmental problems during their application. Perfluoroalkylsulfonylimide complexes show a wide application in catalysis due to their special anionic structures and super acid properties. The structures and properties of bis(perfluoroalkylsulfonyl)imide complexes are introduced. The synthesis and immobilization methods of bis(perfluoroalkylsulfonyl)imide complexes are summarized. The use of immobilized bis(perfluoroalkylsulfonyl)imide complexes in catalytic reactions is also reviewed. The development trends of perfluoroalkylsulfonylimide complexes in the catalytic application are prospected.
  • 加载中
    1. [1]

      (a) Yamamoto, H. Lewis Acids in Organic Synthesis, Vols. 1& 2, Wiley-VCH, Weinheim, 2000, p. 994.
      (b) Santelli, M. ; Pons, J. M. Selectivity in Lewis Acid Promoted Reactions, CRC, Baton Rouge, 1995, p. 352.
      (c) Akiyama, T. Chem. Rev. 2007, 107, 5744.
      (d) Yamamoto, H. ; Ishihara, K. Acid Catalysis in Modern Organic Synthesis, Vols. 1& 2, Wiley-VCH, Weinheim, 2008, p. 1662.

    2. [2]

    3. [3]

      (a) Bochmann, M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1181.
      (b) Strauss, S. H. Chem. Rev. 1993, 93, 927.
      (c) Seppelt K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1025.

    4. [4]

      (a) Leito, I. ; Raamat, E. ; Kütt, A. ; Saame, J. ; Kipper, K. ; Koppel, I. A. ; Zhang, M. ; Mishima, M. ; Yagupolskii, L. M. ; Garlyauskayte, R. Y. ; Filtov, A. A. J. Phys. Chem. A 2009, 113, 8421.
      (b) KoppeI, I. A. ; Taft, R. W. ; Anvia, F. ; Zhu, S. ; Hu, L. ; Sung, K. ; DesMarteau, D. D. ; Yagupolskii, L. M. ; Yagupolskii, Y. L. ; Ignat'ev, N. V. ; Kondratenko, N. V. ; Volkonskii, A. Y. ; Vlasov, V. M. ; Notario, R. ; Maria P. J. Am. Chem. Soc. 1994, 116, 3047.

    5. [5]

      (a) Hong, M. ; Yao, M. ; Pan, H. RSC Adv. 2015, 5, 91558.
      (b) Hong, M. ; Xiao, G. J. Fluorine Chem. 2012, 140, 121.
      (c) Hong, M. ; Xiao, G. J. Fluorine Chem. 2013, 146, 11.

    6. [6]

      Ruff, J. K. Inorg. Chem. 1965, 4, 1446.  doi: 10.1021/ic50032a019

    7. [7]

      Meussdorffer, J. N.; Niederprum, H. Chem.-Ztg. 1972, 96, 582.

    8. [8]

      (a) Foropoulos, J. J. R. ; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
      (b) DesMarteau, D. D. ; Witz, M. J. Fluorine Chem. 1991, 52, 7.

    9. [9]

      (a) Foropoulos, J. ; DesMarteau, D. D. J. Am. Chem. Soc. 1982, 104, 4260.
      (b) Hu, L. Q. ; DesMarteau, D. D. Inorg. Chem. 1993, 32, 5007.
      (c) Geiculescu, O. E. ; Yang, J. ; Blau, H. ; Bailey-Walsh, R. ; Creager, S. E. ; Pennington, W. T. ; DesMarteau, D. D. Solid State Ionics 2002, 148, 173.
      (d) Singh, S. ; DesMarteau, D. D. Inorg. Chem. 1990, 29, 2982.
      (e) Xue, L. X. ; Padgett, C. W. ; DesMarteau, D. D. Solid State Sci. 2002, 4, 1535.

    10. [10]

      (a) Kobayashi, H. ; Nie, J. ; Sonoda, T. Chem. Lett. 1995, 24, 307.
      (b) Mikami, K. ; Kotera, O. ; Motoyama, Y. ; Sakaguchi, H. Synlett. 1995, 975.
      (c) Hao, X. H. ; Yoshida, A. ; Nishikido, J. J Fluorine Chem. 2006, 127, 193.

    11. [11]

      (a) Kannan, K. ; Choi, J. W. ; Iseki, N. ; Senthilkumar, K. ; Kim, D. H. ; Giesy, J. P. Chemosphere 2002, 49, 225.
      (b) Kannan, K. ; Corsolini, S. ; Falandysz, J. ; Oehme, G. ; Focardi, S. ; Giesy, J. P. Sci. Technol. 2002, 36, 3210.
      (c) Kannan, K. ; Newsted, J. ; Halbrook, R. S. ; Giesy, J. P. En-viron. Sci. Technol. 2002, 36, 2566.

    12. [12]

      (a) Olsen, G. W. ; Church, T. R. ; Miller, J. P. ; Burris, J. M. ; Hansen, K. J. ; Lundberg, J. K. ; Armitage, J. B. ; Herron, R. M. ; Medhdizadehkashi, Z. ; Nobiletti, J. B. ; O'Neill, E. M. ; Mandel, J. H. ; Zobel, L. R. Environ. Health Perspect. 2003, 111, 1892.
      (b) Olsen, G. W. ; Logan, P. W. ; Hansen, K. J. ; Simpson, C. A. ; Burris, J. M. ; Burlew, M. M. ; Vorarath, P. P. ; Venkateswarlu, P. ; Schumpert, J. C. ; Mandel, J. H. AIHA J. 2003, 64, 651.
      (c) Olsen, G. W. ; Church, T. R. ; Larson, E. B. ; van Belle, G. ; Lundberg, J. K. ; Hansen, K. J. ; Burris, J. M. ; Mandel, J. H. ; Zobel, L. R. Chemosphere 2004, 54, 1599.
      (d) Lehmler, H. J. Chemosphere 2005, 58, 1471.

    13. [13]

      (a) Roesky, H. W. ; Holtschneider, G. ; Giere, H. H. Z. Naturforsch 1970, 25b, 252.
      (b) Meuβdoerffer, J. N. ; Niederprüm, H. Chem. -Ztg. 1972, 96, 582.
      (c) Bussas, R. ; Kresze, G. Liebigs Ann. Chem. 1982, 545.
      (d) Podol'skii, A. V. ; Kachalkova, M. I. ; Ilatovskii, R. E. ; Kodess, M. I. ; Kolenko, I. P. Russ. J. Org. Chem. 1990, 1242.

    14. [14]

      Foropoulos, J. J. R.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.  doi: 10.1021/ic00191a011

    15. [15]

      (a) Beyer, H. ; Thieme, E. J. Prakt. Chem. 1966, 31, 293.
      (b) Volkov, N. D. ; Nazaretyan, V. P. ; Yagupol'skii, L. M. Syn-thesis 1979, 972.
      (c) Kamigata, N. ; Kawakita, O. ; Izuoka, A. ; Kobayashi, M. J. Org. Chem. 1985, 50, 398.
      (d) Zhu, S. -Z. Tetrahedron Lett. 1992, 33, 6503.
      (e) Xu, Y. ; Zhu, S. Tetrahedron 1999, 55, 13725.

    16. [16]

      Zhu, S.-Z.; Xu, Y.; Wang, Y.-L.; Peng, W.-M. Chin. J. Chem. 2001, 19, 1259.

    17. [17]

      Lehmler, H. J.; Rao, R.; Nauduri, D.; Vargo, J. D.; Parkin, S. J. Fluorine Chem. 2007, 128, 595.  doi: 10.1016/j.jfluchem.2007.01.013

    18. [18]

      Benfodda, Z.; Delon, L.; Guillen, F.; Blancou, H. J. Fluorine Chem. 2007, 128, 1353.  doi: 10.1016/j.jfluchem.2007.05.022

    19. [19]

      Hong, M.; Cai, C.; Yi, W. J. Fluorine Chem. 2010, 131, 111.  doi: 10.1016/j.jfluchem.2009.10.009

    20. [20]

      (a) Zhou, Z. ; Han, H. ; Fu, S. ; Chen, H. CN 102617414, 2012[Chem. Abstr. 2012, 157, 345510].
      (b) Han, H. ; Zhou, Y. ; Liu, K. ; Nie, J. ; Huang, X. ; Armand, M. ; Zhou, Z. Chem. Lett. 2010, 39, 472.

    21. [21]

      Michot, C. ; Armand, M. ; Gauthier, M. ; Choquette, Y. US 6319428, 2001.

    22. [22]

      Howells, R. D. ; Lamanna, W. M. ; Fanta, A. D. ; Waddell, J. US 5874616, 1999[Chem. Abstr. 1999, 130, 184069].

    23. [23]

      Sogabe, K.; Hasegawa, Y.; Wada, Y.; Kitamura, T.; Yanagid, S. Chem. Lett. 2000, 944.

    24. [24]

      (a) Iwahori, T. ; Mitsuishi, I. ; Shiraga, S. ; Nakajima, N. ; Momose, H. ; Ozaki, Y. ; Taniguchi, S. ; Awata, H. ; Ono, T. ; Takeuchi, K. Electrochim. Acta 2000, 45, 1509.
      (b) Wang, X. ; Yasukawa, E. ; Kasuya, S. J. Electrochem. Soc. 2000, 147, 2421.
      (c) Broussely, M. ; Biensan, P. ; Simon, B. Electrochim. Acta 1999, 45, 3.

    25. [25]

      (a) Peyronneau, M. ; Arrondo, C. ; Vendier, L. ; Roques, N. ; Le Roux, C. J. Mol. Catal. A 2004, 211, 89.
      (b) Repichet, S. ; Zwick, A. ; Vendier, L. ; Le Roux, C. ; Dubac, J. Tetrahedron Lett. 2002, 43, 993.
      (c) Baudry, D. B. ; Dormond, A. ; Duris, F. ; Bernard, J. M. ; Desmurs, J. R. J. Fluorine Chem. 2003, 121, 233.
      (d) Earle, M. J. ; Hakala, U. ; McAuley, B. J. ; Nieuwenhuyzen, M. ; Ramani, A. ; Seddon, K. R. Chem. Commun. 2004, 1368.

    26. [26]

      Baudrya, D. B.; Dormonda, A.; Durisa, F.; Bernardb, J. M.; Desmursc, J. R. J. Fluorine Chem. 2003, 121, 233.  doi: 10.1016/S0022-1139(03)00038-1

    27. [27]

      Xue, L.; Padgett, C. W.; DesMarteau, D. D.; Pennington, W. T. Solid State Sci. 2002, 4, 1535.  doi: 10.1016/S1293-2558(02)00050-X

    28. [28]

      (a) Vij, A. ; Zheng, Y. Y. ; Kirchmeier, R. L. ; Shreeve, J. M. Inorg. Chem. 1994, 33, 3281.
      (b) Rogers, E. I. ; Silvester, D. S. ; Ward Jones, S. E. ; Aldous, L. ; Hardacre, C. ; Russell, A. J. ; Davies, S. G. ; Compton, R. G. J. Phys. Chem. C 2007, 111, 13957.
      (c) Serizawa, N. ; Katayama, Y. ; Miura, T. Electrochim. Acta 2010, 56, 346.
      (d) Agel, F. ; Pitsch, F. ; Krull, F. F. ; Schulz, P. ; Wessling, M. ; Melin, T. ; Wasserscheid, P. Phys. Chem. Chem. Phys. 2011, 13, 725.
      (e) Williams, D. B. ; Stoll, M. E. ; Scott, B. L. ; Costa, D. A. ; Oldham, W. J. Chem. Commun. 2005, 1438.
      (f) Arvai, R. ; Toulgoat, F. ; Langlois, B. R. ; Sanchez, J. -Y. ; Médebielle, M. Tetrahedron 2009, 65, 5361.
      (g) Stricker, M. ; Oelkers, B. ; Rosenau, C. P. ; Sundermeyer, J. Chem. -Eur. J. 2013, 19, 1042.

    29. [29]

      Arvai, R.; Toulgoat, F.; Langlois, B. R.; Sanchez, J.; Médebielle, M. Tetrahedron 2009, 65, 5361.  doi: 10.1016/j.tet.2009.04.068

    30. [30]

      (a) Strauss, S. H. ; Polyakov, O. G. ; Hammel, J. W. ; Ivanova, S. M. ; Ivanov, S. V. ; Havighurst, M. D. US 6114266, 2000[Chem. Abstr. 2000, 133, 228539].
      (b) Polyakov, O. G. ; Ivanova, S. M. ; Gaudinski, C. M. ; Miller, S. M. ; Anderson, O. P. ; Strauss, S. H. Organometallics 1999, 18, 3769.

    31. [31]

      Haas, A.; Klare, C.; Betz, P.; Bruckmann, J.; Kruger, C.; Tsay, Y. H.; Aubke, F. Inorg. Chem. 1996, 35, 1918.  doi: 10.1021/ic9507934

    32. [32]

      Picot, A.; Repichet, S.; Le Roux, C.; Dubac, J.; Roques, N. J. Fluorine Chem. 2002, 116, 129.  doi: 10.1016/S0022-1139(02)00122-7

    33. [33]

      Antoniotti, S.; Duñach, E. Chem. Commun. 2008, 993.

    34. [34]

      Shibuya, M.; Fujita, S.; Abe, M.; Yamamoto, Y. ACS Catal. 2017, 7, 2848.  doi: 10.1021/acscatal.7b00403

    35. [35]

      (a) Takasu, A. ; Makino, T. ; Yamada, S. Macromolecules 2010, 43, 144.
      (b) Qiu, T. ; Xu, X. ; Qian, X. J. Chem. Technol. Biotechnol. 2009, 84, 1051.

    36. [36]

      Tan, E.; Ung, S.; Corbet, M. Eur. J. Org. Chem. 2016, 1836.

    37. [37]

      Liu, F.; De Oliveira Vigier, K.; Pera-Titus, M.; Pouilloux, Y.; Clacens, J.; Decampo, F.; Jérôme F. Green Chem. 2013, 15, 901.  doi: 10.1039/c3gc36944g

    38. [38]

      Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. 2015, 80, 3250.  doi: 10.1021/acs.joc.5b00353

    39. [39]

      Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82, 3935.  doi: 10.1021/acs.joc.7b00076

    40. [40]

      Horváth, T. H.; Rabai, J. Science 1994, 266, 72.  doi: 10.1126/science.266.5182.72

    41. [41]

      Horváth, I, T. Acc. Chem. Res. 1998, 31, 641.  doi: 10.1021/ar970342i

    42. [42]

      (a) Nishikido, J. ; Nakajima, H. ; Saeki, T. ; Ishii, A. ; Mikami, K. Synlett 1998, 1347.
      (b) Hao, X. H. ; Yoshida, A. ; Nishikido, J. Tetrahedron Lett. 2005, 46, 2697.
      (c) Hao, X. H. ; Yoshida, A. ; Nishikido, J. Green Chem. 2004, 6, 566.
      (d) Hao, X. H. ; Hoshi, N. Chem Lett. 2006, 35, 1102.

    43. [43]

      Hao, X. H.; Yamazaki, O.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 4977.  doi: 10.1016/S0040-4039(03)01185-7

    44. [44]

      Wang, L.; Nie, J.; Li, X.; Zhang, Z.; Yin, F. Chin. J. Org. Chem. 2004, 24, 778(in Chinese).  doi: 10.3321/j.issn:0253-2786.2004.07.010

    45. [45]

      Schager, F.; Bonrath, W. Appl. Catal A:Gen. 2000, 202, 117.  doi: 10.1016/S0926-860X(00)00456-7

    46. [46]

      Nishikido, J.; Nasayuki, N.; Yoshida, A.; Nakajima, H.; Matsuoto, Y.; Mikami, K. Synlett 2002, 1613.

    47. [47]

      Xiao, J. Z.; Zhang, Z. B.; Nie, J. J. Mol. Catal. A:Chem. 2005, 236, 119.  doi: 10.1016/j.molcata.2005.04.025

    48. [48]

      (a) Tzschucke, C. C. ; Andrushko, V. ; Bannwarth, W. Eur. J. Org. Chem. 2005, 5248.
      (b) Hensle, E. M. ; Bannwarth, W. Helv. Chim. Acta 2012, 95, 2072.
      (c) Hong, M. ; Xiao, G. J. Fluorine Chem. 2012, 144, 7.

    49. [49]

      Yamazaki, O.; Hao, X. H.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 8791.  doi: 10.1016/j.tetlet.2003.09.183

    50. [50]

      (a) Hoshino, M. ; Degenkolb, P. ; Curran, D. P. J. Org. Chem. 1997, 62, 8341.
      (b) Berendsen, G. E., Galan, L. D. J. Liquid Chromatogr. 1978, 1, 403.
      (c) Billiet, H. A. H. ; Schoenmakers, P. J. ; De Galan, L. J. Chromatogr. 1981, 218, 443.
      (c) Berendsen, G. E. ; Pikaart, K. A. ; De Galan, L. ; Olieman, C. Anal. Chem. 1980, 52, 1990.
      (d) Sadek, P. C. ; Carr, P. W. J. Chromatogr. 1984, 288, 25.
      (e) Kainz, S. ; Luo, Z. Y. ; Curran, D. P. ; Leitner, W. Synthesis 1998, 1425.

    51. [51]

      Yamazaki, O.; Hao, X. H.; Yoshida, A.; Nishikido, J. Tetrahedron Lett. 2003, 44, 8791.  doi: 10.1016/j.tetlet.2003.09.183

    52. [52]

      Hong, M.; Xiao, G. J. Fluorine Chem. 2013, 146, 11.  doi: 10.1016/j.jfluchem.2012.12.010

    53. [53]

      Yuan, Y. B.; Nie, J.; Zhang, Z. B.; Wang, S. J. Appl. Catal. A:Gen. 2005, 295, 170.  doi: 10.1016/j.apcata.2005.08.014

    54. [54]

      Yang, Q.; Ma, Z.; Ma, J.; Nie, J. Microporous Mesoporous Mater. 2013, 172, 51.  doi: 10.1016/j.micromeso.2013.01.008

    55. [55]

      Chen, M.; You, L.; Zhang, H.; Ma, Z. Catal. Lett. 2016, 146, 2165.  doi: 10.1007/s10562-016-1842-2

    56. [56]

      Ma, Z.; Han, H.; Zhou, Z.; Nie, J. J. Mol. Catal. A:Chem. 2009, 311, 46.  doi: 10.1016/j.molcata.2009.06.021

    57. [57]

      Jiang, H. Curr. Org. Chem. 2005, 9, 289.  doi: 10.2174/1385272053369079

    58. [58]

      Nishikido, J.; Kamishima, M.; Matsuzawa, H.; Mikami, K. Tetrahedron 2002, 58, 8345.  doi: 10.1016/S0040-4020(02)00986-9

    59. [59]

      (a) Rogers, R. D. ; Seddon, K. Science 2003, 302, 792.
      (b) Lee, S. G. Chem. Commun. 2006, 1049.
      (c) Earle, M. J. ; Esperança, J. M. S. S. ; Gilea, M. A. ; Lopes, J. N. C. ; Rebelo, L. P. N. ; Magee, J. W. ; Seddon, K. R. ; Widegre, J. A. Nature 2006, 439, 831.

    60. [60]

      Wang, S. J.; Jiang, S. J.; Nie, J. Adv. Synth. Catal. 2009, 351, 1939.  doi: 10.1002/adsc.v351:11/12

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(16)
  • Abstract views(3362)
  • HTML views(692)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return