Citation: Wang Tieshi, Chen Jianjun, Ye Lin, Zhang Aiying, Feng Zengguo. Synthesis of Tritertbutylphosphinimine Phenoxy Titanium Complexes and Their Catalytic Performance to Ethylene Polymerization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1544-1548. doi: 10.6023/cjoc201801004 shu

Synthesis of Tritertbutylphosphinimine Phenoxy Titanium Complexes and Their Catalytic Performance to Ethylene Polymerization

  • Corresponding author: Feng Zengguo, sainfeng@bit.edu.cn
  • Received Date: 4 January 2018
    Revised Date: 9 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the Technology Development Project of China Petroleum & Chemical Corporation (Sinopec) (No. 214002)the Technology Development Project of China Petroleum & Chemical Corporation (Sinopec) 214002

Figures(4)

  • Tritertbutylphosphinimine phenoxy titanium complexes (t-Bu3)PNTi(OAr)Cl2 [Ar=C6H5(4a), 2, 6-Me2C6H3 (4b), 2, 6-i-Pr2C6H3 (4c) and 2, 6-t-Bu2C6H3 (4d)] were synthesized via the reaction of corresponding substituted phenol lithium salts with tritertbutylphosphinimine trichloride titanium (3). The compounds were characterized by means of 1H NMR, 13C NMR, 31P NMR spectroscopic and elemental analyses, and the molecular structures of 3, 4b and 4d were further confirmed by single-crystal X-ray diffraction analysis. When activated with methylaluminoxane (MAO), 4a~4d displayed not only high catalytic activities, but also increasing performances on ethylene polymerization with increasing the sterical hindrance of substituents. Furthermore, 4c depicted a good thermal stability, with which the polyethylene products of different molecular weights and molecular weight distributions can be obtained by tuning the polymerization conditions.
  • 加载中
    1. [1]

      Britovsek G. J. P., Gibson V. C., Wass D. F.Angew. Chem., 1999, 111:448.  doi: 10.1002/(ISSN)1521-3757
       

    2. [2]

      Valente A., Mortreux A., Visseaux M., Zinck P.Chem. Rev., 2013, 113:3836.  doi: 10.1021/cr300289z
       

    3. [3]

      Stehling U., Diebold J., Kirsten R., Roll W., Brintzinger H.-H., Jungling S., Mulhaupt R., Langhauser F.Organometallics, 1994, 13:964.  doi: 10.1021/om00015a033
       

    4. [4]

      Resconi L., Balboni D., Baruzzi G., Fiori C., Guidotti S.Organometallics, 2000, 19:420.  doi: 10.1021/om990487o

    5. [5]

      Ewen J. A., Jones R. L., Elder M. J., Rheingold A. L., Liable-Sands L. M.J. Am. Chem. Soc., 1998, 120:10786.  doi: 10.1021/ja9823215

    6. [6]

      Chen J. J., Wang T. S., Tang Z. W., Xu Y. B., Xu L., Cao M. S., Feng, Z, G.Acta Polym. Sin., 2017, 1294(in Chinese).
       

    7. [7]

      Yamasaki H., Kimura K., Nakano M., Ushioda T.Chem. Lett., 1999, 1311.

    8. [8]

      Su B. Y., Jia P. Y., Wang Y. Z., Li Y. N., Huang H., Li Q. D.Chin. J. Org. Chem., 2016, 36:2344(in Chinese).
       

    9. [9]

      Kang X. H., Zhou G. L., Wang X. B., Qu J. P., Hou Z. M., Luo Y.Organometallics, 2016, 35:913.  doi: 10.1021/acs.organomet.6b00081
       

    10. [10]

      Xu S., Liang C. C., Lv Z. W., Zhu Y. L., Zhang C., Mi P. K.Chin. J. Org. Chem., 2017, 37:1284(in Chinese).
       

    11. [11]

      Qi C. H., Zhang S. B.Appl. Organomet. Chem., 2006, 20:70.  doi: 10.1002/(ISSN)1099-0739
       

    12. [12]

      Liu K., Wu Q., Gao W., Mu Y., Ye L.Eur. J. Inorg. Chem., 2011, 12:1901.
       

    13. [13]

      Liu Q. Y., Gao R., Hou J. X., Sun W. H.Chin. J. Org. Chem., 2013, 33:808(in Chinese).
       

    14. [14]

      Nomura K., Liu J.Dalton Trans., 2011, 7666.

    15. [15]

      Kakinuki K., Fujiki M., Nomura K.Macromolecules, 2009, 42:4585.  doi: 10.1021/ma900576v
       

    16. [16]

      Nomura K., Pengoubol S., Apisuk W.RSC Adv., 2016, 6:16203.  doi: 10.1039/C5RA27797C

    17. [17]

      Hu W. Q., Sun X. L., Wang C., Gao Y., Tang Y., Shi L. P., Xia W., Sun J., Dai H. L., Li X. Q., Yao X. L., Wang X. R.Organometallics, 2004, 23:1684.  doi: 10.1021/om0303808

    18. [18]

      Stephan D. W., Guerin F., Spence R. E...v. H.; Koch L., Gao X. L., Brown S. J., Swabey J. W., Wang Q. Y., Xu W., Zoricak P., Harrison D. G.Organometallics, 1999, 18:2046.  doi: 10.1021/om981026q

    19. [19]

      Stephan D. W., Stewart J. C., Guerin F., Spence R. E.v. H.; Xu W., Harrison D. G.Organometallics, 1999, 18:1116.  doi: 10.1021/om980955e
       

    20. [20]

      Stephan D. W.Organometallics, 2005, 24:2548.  doi: 10.1021/om050096b

    21. [21]

      Yue N., Hollink E., Guerin F., Stephan D. W.Organometallics, 2001, 20:4424.  doi: 10.1021/om010433q
       

    22. [22]

      Hollink E., Stewart J. C., Wei P. R., Stephan D. W.Dalton Trans., 2003, 3968.

    23. [23]

      Hollink E., Stewart J. C., Wei P. R., Stephan D. W.Can. J. Chem., 2004, 82:1304.  doi: 10.1139/v04-062

    24. [24]

      Yuan S. F., Wang L. J., Zhang Q. Y., Sun W. H.Prog. Chem., 2017, 29:1462(in Chinese).
       

    25. [25]

      Fenwick A. E., Phomphrai K., Thorn M. G., Vilardo J. S., Trefun C. A., Hanna B., Fanwick P. E., Rothwell I. P.Organometallics, 2004, 23:2146.  doi: 10.1021/om0341404

    26. [26]

      Phomphrai K., Fenwick A. E., Sharma S., Fanwick P. E., Caruthers J. M., Delgass W. N., Abu-Omar M. M., Rothwell I. P.Organometallics 2006, 25, 214.  doi: 10.1021/om0507272

    27. [27]

      Nomura K., Naga N., Miki M., Yanagi K.Macromolecules, 1998, 31:7588.  doi: 10.1021/ma980690f
       

    28. [28]

      Yan Q., Yang W. H., Chen L. Q., Wang L., Redshaw C., Sun W. H.J. Organomet. Chem., 2014, 753:34.  doi: 10.1016/j.jorganchem.2013.12.021
       

    29. [29]

      Lv Y., Wang S. C., Wu B., Zheng Q. T., Han G. Q., Sun H. D.Acta Acad. Med. Sin., 1999, 21:1(in Chinese).  doi: 10.3321/j.issn:1000-503X.1999.01.001

  • 加载中
    1. [1]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(7)
  • Abstract views(1135)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return