Citation: Zhang Zhenbei, Sun Wei, Cao Zhishan. Progress in Activation of Small Molecules Promoted by Frustrated Lewis Pairs[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1292-1318. doi: 10.6023/cjoc201801003 shu

Progress in Activation of Small Molecules Promoted by Frustrated Lewis Pairs

  • Corresponding author: Zhang Zhenbei, zhenbei.zhang@hist.edu.cn
  • Received Date: 3 January 2018
    Revised Date: 26 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21473226)the National Natural Science Foundation of China 21473226

Figures(72)

  • Frustrated Lewis pairs (FLPs) chemistry has grown rapidly during the last decade and provided a new strategy for the activation of a variety of small molecules, such as hydrogen, olefins, alkynes, carbon dioxide, tetrahydrofuran and hydrosilane etc. The activations of these molecules have probided a new method in the utility of main group element. The structure and reactivity of FLPs are reviewed and the recent progress in activation of small molecules promoted by frustrated Lewis pairs is introduced.
  • 加载中
    1. [1]

      Lewis, G. N. Valence and the Structure of Atoms and Molecules, Chemical Catalogue Company, New York, 1923.

    2. [2]

      Shore, S. G.; Parry, R. W. J.Am.Chem. Soc. 1955, 77, 6084.  doi: 10.1021/ja01627a103

    3. [3]

      Brown, H. C.; Schlesinger, H. I.; Cardon, S. Z. J. Am.Chem.Soc. 1942, 64, 325.  doi: 10.1021/ja01254a031

    4. [4]

      (a) Wittig, G. ; Benz, E. Chem. Ber. 1959, 92, 1999.
      (b) Tochtermann, W. Angew. Chem., Int. Ed. Engl. 1966, 5, 351.

    5. [5]

      (a) Bontemps, S. ; Bouhadir, G. ; Miqueu, K. ; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 12056.
      (b) Grobe, J. ; Lütke-Brochtrup, K. ; Krebs, B. ; Läge, M. ; Niemeyer, H. -H. ; Würthwein E. -U. Z. Naturforsch. B 2006, 61, 882.
      (c) Hudnall, T. W. ; Kim, Y. M. ; Bebbington, M. W. P. ; Bourissou, D. ; Gabba, F. P. J. Am. Chem. Soc. 2008, 130, 10890.
      (d) Chiu, C. -B. ; Gabba, F. P. Dalton Trans. 2008, 814.
      (e) Lin, T. -P. ; Gualco, P. ; Ladeira, S. ; Amgoune, A. ; Bourissou, D. ; Gabba, F. P. C. R. Chim. 2010, 13, 1168.
      (f) Courtemanche, M. A. ; Legare, M. A. ; Maron, L. ; Fontaine, F. G. J. Am. Chem. Soc. 2013, 135, 9326

    6. [6]

      Roesler, R.; Piers, W. E.; Parvez, M. J.Organomet. Chem. 2003, 680, 218.  doi: 10.1016/S0022-328X(03)00384-X

    7. [7]

      Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    8. [8]

      Welch, G. C.; Stephan, D. W. J.Am. Chem.Soc. 2007, 129, 1880.  doi: 10.1021/ja067961j

    9. [9]

      Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. Chem.Commun. 2007, 5072.
       

    10. [10]

      McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew.Chem., Int.Ed. 2007, 46, 4968.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      (a) Peng, B. ; Nie, Y. China Terminol. 2010, 12, 44(in Chinese).
      (彭斌, 聂永, 中国科技术语, 2010, 12, 44. )
      (b) Liu, Y. ; Du, H. Acta Chim. Sinica 2014, 72, 771(in Chinese).
      (刘勇兵, 杜海峰, 化学学报, 2014, 72, 711. )

    12. [12]

      (a) Möming, C. M. ; Otten, E. ; Kehr, G. ; Frölich, R. ; Grimme, S. ; Stephan, D. W. ; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.
      (b) Peuser, I. ; Neu, R. C. ; Zhao, X. ; Ulrich, M. ; Schirmer, B. ; Tannert, J. A. ; Kehr, G. ; Froehlich, R. ; Grimme, S. ; Erker, G. ; Stephan, D. W. Chem. -Eur. J. 2011, 17, 9640

    13. [13]

      (a) Cardenas, A. J. P. ; Culotta, B. J. ; Warren, T. H. ; Grimme, S. ; Stute, A. ; Frölich, R. ; Kehr, G. ; Erker, G. Angew. Chem., Int. Ed. 2011, 50, 7567.
      (b) Neu, R. C. ; Otten, E. ; Lough, A. ; Stephan, D. W. Chem. Sci. 2011, 2, 170

    14. [14]

      Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Fröhlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Chem.Sci. 2013, 4, 213.  doi: 10.1039/C2SC21161K

    15. [15]

      Möming, C. M.; Fröel, S.; Kehr, G.; Frölich, R.; Grimme, S.; Erker, G. J.Am.Chem.Soc. 2009, 131, 12280.  doi: 10.1021/ja903511s

    16. [16]

      Dureen, M. A.; Stephan, D. W. J.Am.Chem.Soc. 2009, 131, 8396.  doi: 10.1021/ja903650w

    17. [17]

      (a) Erker, G. ; Stephan, D. W. Frustrated Lewis Pairs I Uncovering and Understanding, Springer-Verlag, Berlin, Heidelberg, 2013.
      (b) Stephan, D. W. ; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
      (c) Stephan, D. W. ; Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400.
      (d) Lu, Z. ; Ye, H. ; Wang, H. Top. Curr. Chem. 2013, 334, 59.
      (e) Wang, H. ; Zheng, Y. ; Pan, Z. ; Fu, H. ; Ling, F. ; Zhong, W. Chin. J. Org. Chem. 2017, 37, 301(in Chinese).
      (王辉, 郑亿, 潘振涛, 傅鸿樑, 凌飞, 钟为慧, 有机化学, 2017, 37, 301. )
      (f) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
      (g) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740

    18. [18]

      Schulz, F.; Sumerin, V.; Heikkinen, S.; Pedersen, B.; Wang, C.; Atsumi, M.; Leskel, M.; Repo, T.; Pyykkö, P.; Petry, W.; Rieger, B. J.Am. Chem.Soc. 2011, 133, 20245.  doi: 10.1021/ja206394w

    19. [19]

      Zaher, H.; Ashley, A. E.; Irwin, M.; Thompson, A. L.; Gutmann, M. J.; Krämera, T.; O'Hare D. Chem. Commun. 2013, 49, 9755.  doi: 10.1039/c3cc45889j

    20. [20]

      Karkamkar, A.; Parab, K.; Camaioni, D. M.; Neiner, D.; Cho, H. M.; Nielsen, T. K.; Autrey, T. Dalton Trans. 2013, 42, 615.  doi: 10.1039/C2DT31628E

    21. [21]

      Kim, H. W.; Rhee, Y. M. Chem.-Eur.J. 2009, 15, 13348.  doi: 10.1002/chem.200902322

    22. [22]

      Bakó, I.; Stirling, A.; Bálint, S.; Pápai, I. Dalton Trans. 2012, 41, 9023.  doi: 10.1039/c2dt30370a

    23. [23]

      Rocchigiani, L.; Ciancaleoni, G.; Zuccaccia, C.; Macchioni, A. J. Am.Chem.Soc. 2014, 136, 112.  doi: 10.1021/ja4119169

    24. [24]

      Marwitz, A. J. V.; Dutton, J. L.; Mercier, L. G.; Piers, W. E. J. Am.Chem.Soc. 2011, 133, 10026.  doi: 10.1021/ja203214f

    25. [25]

      Zhao, X.; Stephan, D. W. J.Am.Chem.Soc. 2011, 133, 12448.  doi: 10.1021/ja205598k

    26. [26]

      (a) Rokob, T. A. ; Hamza, A. ; Stirling, A. ; Soós, T. ; Pápai, I. Angew. Chem., Int. Ed. 2008, 47, 2435.
      (b) Grimme, S. ; Kruse, H. ; Goerigk, L. ; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 1402

    27. [27]

      Schwendemann, S.; Fröhlich, R.; Kehr, G.; Erker, G. Chem.Sci. 2011, 2, 1842.  doi: 10.1039/c1sc00124h

    28. [28]

      (a) Axenov, K. ; Mömming, C. ; Kehr, G. ; Fröhlich, R. ; Erker, G. Chem. -Eur. J. 2010, 16, 14069.
      (b) Spies, P. ; Kehr, G. ; Bergander, K. ; Wibbeling, B. ; Fröhlich, R. ; Erker, G. Dalton Trans. 2009, 1534

    29. [29]

      Wiegand, T.; Eckert, H.; Ekkert, O.; Fröhlich, R.; Kehr, G.; Erker, G.; Grimme, S. J.Am.Chem.Soc. 2012, 134, 4236.  doi: 10.1021/ja210160k

    30. [30]

      Wang, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. J.Am.Chem. Soc. 2014, 136, 3293.  doi: 10.1021/ja413060u

    31. [31]

      (a) Rosorius, C. ; Daniliuc, C. G. ; Fröhlich, R. ; Kehr, G. ; Erker, G. J. Organomet. Chem. 2013, 744, 149.
      (b) Rosorius, C. ; Kehr, G. ; Fröhlich, R. ; Grimme, S., Erker, G. Organometallics 2011, 30, 4211

    32. [32]

      (a) Stute, A. ; Kehr, G. ; Fröhlich, R. ; Erker, G. Chem. Commun. 2011, 47, 4288.
      (b) Stute, A. ; Kehr, G. ; Daniliuc, C. G. ; Fröhlich, R. ; Erker, G. Dalton Trans. 2013, 42, 4487

    33. [33]

      Stute, A.; Heletta, L.; Fröhlich, R.; Daniliuc, C. G.; Kehr, G.; Erker, G. Chem.Commun. 2012, 48, 11739.  doi: 10.1039/c2cc36782c

    34. [34]

      Geier, S. J.; Stephan, D. W. J.Am.Chem.Soc. 2009, 131, 3476.  doi: 10.1021/ja900572x

    35. [35]

      Dureen, M. A.; Stephan, D. W. J.Am.Chem.Soc. 2010, 132, 13559.  doi: 10.1021/ja1064153

    36. [36]

      Xu, B.-H.; Bussmann, K.; Fröhlich, R.; Daniliuc, C. G.; Brandenburg, J. G.; Grimme, S.; Kehr, G.; Erker, G. Organometallics 2013, 32, 6745.  doi: 10.1021/om4004225

    37. [37]

      (a) Schwendemann, S. ; Oishi, S. ; Saito, S. ; Fröhlich, R. ; Kehr, G. ; Erker, G. Chem. -Asian J. 2013, 8, 212.
      (b) Lindqvist, M. ; Axenov, K. ; Nieger, M. ; Raeisaenen, M. ; Leskelä, M. ; Repo T. Chem. -Eur. J. 2013, 19, 10412

    38. [38]

      Welch, G. C.; Masuda, J. D.; Stephan, D. W. Inorg.Chem. 2006, 45, 478.  doi: 10.1021/ic051713r

    39. [39]

      Wang, H., Fröhlich, R.; Kehr, G.; Erker, G. Chem.Commun. 2008, 5966.
       

    40. [40]

      (a) Oezguen, T. ; Ye, K. -Y. ; Daniliuc, C. G. ; Wibbeling, B. ; Liu, L. ; Grimme, S. ; Kehr, G. ; Erker, G. Chem. -Eur. J. 2016, 22, 5988.
      (b) Oezguen, T. ; Bergander, K. ; Liu, L. ; Daniliuc, C. G. ; Grimme, S. ; Kehr, G. ; Erker, G. Chem. -Eur. J. 2016, 22, 11958

    41. [41]

      Geier, S. J.; Gilbert, T. M.; Stephan, D. W. J.Am.Chem. Soc. 2008, 130, 12632.  doi: 10.1021/ja805493y

    42. [42]

      Blagg, R. J.; Lawrence, E. J.; Resner, K.; Oganesyan, V. S.; Herrington, T. J.; Ashley, A. E.; Wildgoose, G. G. Dalton Trans. 2016, 45, 6023.  doi: 10.1039/C5DT01918D

    43. [43]

      Ramos, A.; Lough, A. J.; Stephan, D. W. Chem.Commun. 2009, 1118.
       

    44. [44]

      (a) Liptau, P. ; Neumann, M. ; Erker, G. ; Kehr, G. ; Fröhlich, R. ; Grimme, S. Organometallics 2004, 23, 21.
      (b) Huber, D. P. ; Kehr, G. ; Bergander, K. ; Fröhlich, R. ; Erker, G. ; Tanino, S. ; Ohki, Y. ; Tatsumi, K. Organometallics 2008, 27, 5279

    45. [45]

      (a) Axenov, K. V. ; Kehr, G. ; Fröhlich, R. ; Erker, G. J. Am. Chem. Soc. 2009, 131, 3454.
      (b) Unverhau, K. ; Lübbe, G. ; Wibbeling, B. ; Fröhlich, R. ; Kehr, G. ; Erker, G. Organometallics 2010, 29, 5320

    46. [46]

      (a) Ullrich, M. ; Lough, A. J. ; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 52.
      (b) Ullrich, M. ; Lough, A. J. ; Stephan, D. W. Organometallics 2010, 29, 3647

    47. [47]

      Xing, J.-Y.; Buffet, J.-C.; Rees, N. H.; Norby, P.; O'Hare, D. Chem. Commun. 2016, 52, 10478.  doi: 10.1039/C6CC04937K

    48. [48]

      (a) Chase, P. A. ; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433.
      (b) Geier, S. J. ; Chase, P. A. ; Stephan, D. W. Chem. Commun. 2010, 46, 4884.
      (c) Holschumacher, D. ; Bannenberg, T. ; Hrib, C. G. ; Jones, P. G. ; Tamm, M. Angew. Chem., Int. Ed. 2008, 47, 7428

    49. [49]

      Lam, J.; Guenther, B. A. R.; Farrell, J. M.; Eisenberger, P.; Bestvater, B. P.; Newman, P. D.; Melen, R. L.; Crudden, C. M.; Stephan, D. W. Dalton Trans. 2016, 45, 15303.  doi: 10.1039/C6DT02202B

    50. [50]

      Tao, X.; Kehr, G.; Wang, X.; Daniliuc, C. G.; Grimme, S.; Erker, G. Chem.-Eur. J. 2016, 22, 9504.  doi: 10.1002/chem.201602058

    51. [51]

      Chase, P. A.; Jurca, T., Stephan, D. W. Chem.Commun. 2008, 1701.
       

    52. [52]

      (a) Tussing, S. ; Paradies, J. Dalton Trans. 2016, 45, 6124.
      (b) Tussing, S. ; Kaupmees, K. ; Paradies, J. Chem. -Eur. J. 2016, 22, 7422

    53. [53]

      Courtemanche, M.-A.; Rochette, E.; Legare, M.-A.; Bi, W.; Fontaine, F.-G. Dalton Trans. 2016, 45, 6129.  doi: 10.1039/C5DT03916A

    54. [54]

      Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; Repo, T.; Rieger, B. Angew.Chem., Int.Ed. 2008, 47, 6001.  doi: 10.1002/anie.200800935

    55. [55]

      (a) Lu, Z. P. ; Cheng, Z. H. ; Chen, Z. X. ; Weng, L. H. ; Li, Z. H. ; Wang, H. D. Angew. Chem., Int. Ed. 2011, 50, 12227.
      (b) Yepes, D. ; Jaque, P. ; Fernandez, I. Chem. -Eur. J. 2016, 22, 18801

    56. [56]

      Geier, S. J.; Gille, A. L.; Gilbert, T. M.; Stephan, D. W. Inorg. Chem. 2009, 48, 10466.  doi: 10.1021/ic901726b

    57. [57]

      Zheng, J.; Lin, Y.-J.; Wang, H. Dalton Trans. 2016, 45, 6088.  doi: 10.1039/C5DT03815D

    58. [58]

      (a) Liu, Y. ; Du, H. J. Am. Chem. Soc. 2013, 135, 6810.
      (b) Liu, Y. ; Du, H. J. Am. Chem. Soc. 2013, 135, 12968.
      (c) Wei, S. ; Du, H. J. Am. Chem. Soc. 2014, 136, 12261.
      (d) Wang, W. ; Meng, W. ; Du, H. Dalton Trans. 2016, 45, 5945.
      (e) Wang, W. ; Feng, X. ; Du, H. Org. Biomol. Chem. 2016, 14, 6683.
      (f) Ren, X. ; Du, H. J. Am. Chem. Soc. 2016, 138, 810.
      (g) Wang, Y. W. ; Chen, W. Q. ; Lu, Z. P. ; Li, Z. H. ; Wang, H. D. Angew. Chem., Int. Ed. 2013, 52, 7496

    59. [59]

      (a) Stirling, A. ; Hamza, A. ; Rokob, T. A. ; Pápai, I. Chem. Commun. 2008, 3148.
      (b) Guo, Y. ; Li, S. Eur. J. Inorg. Chem. 2008, 2501

    60. [60]

      Zhao, X.; Stephan, D. W. Chem.Sci. 2012, 3, 2123.  doi: 10.1039/c2sc20262j

    61. [61]

      Voss, T.; Mahdi, T.; Otten, E.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 2367.  doi: 10.1021/om300017u

    62. [62]

      Voss, T.; Chen, C.; Kehr, G.; Nauha, E.; Erker, G.; Stephan, D. W. Chem.-Eur. J. 2010, 16, 3005.  doi: 10.1002/chem.v16:10

    63. [63]

      Dornan, P. K.; Longobardi, L. E.; Stephan, D. W. Synlett 2014, 1521.
       

    64. [64]

      Ullrich, M.; Seto, K. S.-H.; Lough, A. J.; Stephan, D. W. Chem. Commun. 2009, 2335.
       

    65. [65]

      (a) Dureen, M. A. ; Brown, C. C. ; Stephan, D. W. Organometallics 2010, 29, 6594.
      (b) Ye, H. Y. ; Lu, Z. P. ; You, D. ; Chen, Z. X. ; Li, Z. H. ; Wang, H. D. Angew. Chem., Int. Ed. 2012, 51, 12047

    66. [66]

      Yu, J.; Kehr, G.; Daniliuc, C. G.; Erker, G. Chem.Commun. 2016, 52, 1393.  doi: 10.1039/C5CC07954C

    67. [67]

      Fukazawa, A.; Yamada, H.; Yamaguchi, S. Angew.Chem., Int. Ed. 2008, 47, 5582.  doi: 10.1002/anie.v47:30

    68. [68]

      Klose, A.; Kehr, G.; Daniliuc, C. G.; Erker, G. Dalton Trans. 2016, 45, 2023.  doi: 10.1039/C5DT03055B

    69. [69]

      Tanur, C. A.; Stephan, D. W. Organometallics 2011, 30, 3652.  doi: 10.1021/om200336t

    70. [70]

      Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6422.  doi: 10.1021/om1008346

    71. [71]

      Zhao, X.; Lough, A.; Stephan, D. W. Chem.-Eur.J. 2011, 17, 6731.  doi: 10.1002/chem.v17.24

    72. [72]

      Zhao, X.; Gilbert, T. M.; Stephan, D. W. Chem.-Eur.J. 2010, 16, 10304.  doi: 10.1002/chem.201001575

    73. [73]

      Wilkins, L. C.; Gunther, B. A. R.; Walther, M.; Lawson, J. R.; Wirth, T.; Melen, R. L. Angew.Chem., Int.Ed. 2016, 55, 11292.  doi: 10.1002/anie.201605239

    74. [74]

      Mahdi, T.; Stephan, D. W. Angew.Chem., Int.Ed. 2013, 52, 12418.  doi: 10.1002/anie.201307254

    75. [75]

      Wittig, G.; Ruckert, A. Liebigs Ann.Chem. 1950, 566, 101.  doi: 10.1002/(ISSN)1099-0690

    76. [76]

      Breen, T. L.; Stephan, D. W. Inorg.Chem. 1992, 31, 4019.  doi: 10.1021/ic00045a032

    77. [77]

      (a) Avens, L. R. ; Barnhart, D. M. ; Burns, C. J. ; McKee, S. D. Inorg. Chem. 1996, 35, 537.
      (b) Campello, M. P. C. ; Domingos, A. ; Santos, I. J. Organomet. Chem. 1994, 484, 37

    78. [78]

      Evans, W. J.; Leman, J. T.; Ziller, J. W.; Khan, S. I. Inorg. Chem. 1996, 35, 4283.  doi: 10.1021/ic951627z

    79. [79]

      Mommertz, A.; Leo, R.; Massa, W.; Harms, K.; Dehnicke, K. Z.Anorg. Allg.Chem. 1998, 624, 1647.  doi: 10.1002/(ISSN)1521-3749

    80. [80]

      (a) Breen, T. L. ; Stephan, D. W. Inorg. Chem. 1992, 31, 4019.
      (b) Guo, Z. Y. ; Bradley, P. K. ; Jordan, R. F. Organometallics 1992, 11, 2690.
      (c) Polamo, M. ; Mutikainen, I. ; Leskela, M. Acta Crystallogr. C 1997, 53, 1036

    81. [81]

      GomezSaso, M.; Mullica, D. F.; Sappenfield, E.; Stone, F. G. A. Polyhedron 1996, 15, 793.  doi: 10.1016/0277-5387(95)00328-7

    82. [82]

      (a) Chivers, T. ; Schatte, G. Eur. J. Inorg. Chem. 2003, 3314.
      (b) Kunnari, S. M. ; Oilunkaniemi, R. ; Laitinen, R. S. ; Ahlgren, M. J. Chem. Soc., Dalton. Trans. 2001, 3417

    83. [83]

      Campbell, J. P.; Gladfelter, W. L. Inorg.Chem. 1997, 36, 4094.  doi: 10.1021/ic970171d

    84. [84]

      Zhang, Z.; Miao, C.; Xia, C.; Sun, W. Org.Lett. 2016, 18, 1522.  doi: 10.1021/acs.orglett.6b00157

    85. [85]

      Birkmann, B.; Voss, T.; Geier, S. J.; Ullrich, M.; Kehr, G.; Erker, G.; Stephan, D. W. Organometallics 2010, 29, 5310.  doi: 10.1021/om1003896

    86. [86]

      Sgro, M. J.; Dömer, J.; Stephan, D. W. Chem.Commun. 2012, 48, 7253.  doi: 10.1039/c2cc33301e

    87. [87]

      Kreitner, C.; Geier, S. J.; Stanlake, L. J. E.; Caputo, C.; Stephan, D. W. Dalton Trans. 2011, 6771.
       

    88. [88]

      Morton, J. G. M.; Dureen, M. A.; Stephan, D. W. Chem.Commun. 2010, 46, 8947.  doi: 10.1039/c0cc02862b

    89. [89]

      Neu, R. C.; Ménard, G.; Stephan, D. W. Dalton Trans. 2012, 41, 9016.  doi: 10.1039/c2dt30206c

    90. [90]

      Zhao, X.; Stephan, D. W. Chem.Commun. 2011, 47, 1833.  doi: 10.1039/c0cc04791k

    91. [91]

      Ashley, A. E.; Thompson, A. L.; OÏHare, D. Angew.Chem., Int.Ed. 2009, 48, 9839.  doi: 10.1002/anie.v48:52

    92. [92]

      Berkefeld, A.; Piers, W. E.; Parvez, M. J.Am.Chem. Soc. 2010, 132, 10660.  doi: 10.1021/ja105320c

    93. [93]

      Takeuchi, K.; Stephan, D. W. Chem.Commun. 2012, 48, 11304.  doi: 10.1039/c2cc36470k

    94. [94]

      Dobrovetsky, R.; Stephan, D. W. J.Am.Chem.Soc. 2013, 135, 4974.  doi: 10.1021/ja401492s

    95. [95]

      Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. Org.Lett. 2016, 18, 6316.  doi: 10.1021/acs.orglett.6b03030

    96. [96]

      Liu, L.; Vankova, N.; Heine, T. Phys.Chem.Chem. Phys. 2016, 18, 3567.  doi: 10.1039/C5CP06925D

    97. [97]

      Ménard, G.; Stephan, D. W. J.Am.Chem.Soc. 2010. 132, 1796.  doi: 10.1021/ja9104792

    98. [98]

      Ménard, G.; Stephan, D. W. Angew.Chem., Int.Ed. 2011, 50, 8396.  doi: 10.1002/anie.v50.36

    99. [99]

      (a) Ghoussoub, M. ; Yadav, S. ; Ghuman, K. K. ; Ozin, G. A. ; Singh, C. V. ACS Catal. 2016, 6, 7109.
      (b) Ghuman, K. K. ; Hoch, L. B. ; Szymanski, P. ; Loh, J. Y. Y. ; Kherani, N. P. ; El-Sayed, M. A. ; Ozin, G. A. ; Singh, C. V. J. Am. Chem. Soc. 2016, 138, 1206.
      (c) Ghuman, K. K. ; Hoch, L. B. ; Wood, T. E. ; Mims, C. ; Singh, C. V. ; Ozin, G. A. ACS Catal. 2016, 6, 5764

    100. [100]

      Sajid, M.; Kehr, G.; Daniliuc, C. G.; Erker, G. Angew.Chem., Int.Ed. 2014, 53, 1118.  doi: 10.1002/anie.201307551

    101. [101]

      Sajid, M.; Elmer, L. M.; Rosorius, C.; Daniliuc, C. G.; Grimme, S.; Kehr, G.; Erker, G. Angew.Chem., Int.Ed. 2013, 52, 2243.  doi: 10.1002/anie.201208750

    102. [102]

      Ye, K.-Y.; Kehr, G.; Daniliuc, C. G.; Liu, L.; Grimme, S.; Erker, G. Angew.Chem., Int.Ed. 2016, 55, 9216.  doi: 10.1002/anie.201603760

    103. [103]

      (a) Oestreich, M. ; Hermeke, J. ; Mohr, J. Chem. Soc. Rev. 2015, 44, 2202.
      (b) Fernandez-Alvarez, F. J. ; Aitani, A. M. ; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611

    104. [104]

      (a) Houghton, A. Y. ; Hurmalainen, J. ; Mansikkamaki, A. ; Piers, W. E. ; Tuononen, H. M. Nat. Chem. 2014, 6, 983.
      (b) Nikonov, G. I. ; Vyboishchikov, S. F. ; Shirobokov, O. G. J. Am. Chem. Soc. 2012, 134, 5488.
      (c) Mathew, J. ; Eguchi, K. ; Nakajima, Y. ; Sato, K. ; Shimada, S. ; Choe, Y. K. Eur. J. Org. Chem. 2017, 4922

    105. [105]

      Parks, D. J.; Piers, W. E. J.Am.Chem.Soc. 1996, 118, 9440.  doi: 10.1021/ja961536g

    106. [106]

      (a) Parks, D. J. ; Blackwell, J. M. ; Piers, W. E. J. Org. Chem. 2000, 65, 3090.
      (b) Sakata, K. ; Fujimoto, H. J. Org. Chem. 2013, 78, 12505.
      (c) Keess, S. ; Simonneau, A. ; Oestreich, M. Organometallics 2015, 34, 790

    107. [107]

      Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 58, 8247.  doi: 10.1016/S0040-4020(02)00974-2

    108. [108]

      Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org.Chem. 1999, 64, 4887.  doi: 10.1021/jo9903003

    109. [109]

      (a) Gevorgyan, V. ; Rubin, M. ; Liu, J. -X. ; Yamamoto, Y. J. Org. Chem. 2001, 66, 1672.
      (b) Bézier, D. ; Park, S. ; Brookhart, M. Org. Lett. 2013, 15, 496

    110. [110]

      (a) Bajracharya, G. B. ; Nogami, T. ; Jin, T. ; Matsuda, K. ; Gevorgyan, V. ; Yamamoto, Y. Synthesis 2004, 308.
      (b) Nimmagadda, R. D. ; McRae, C. Tetrahedron Lett. 2006, 47, 5755.
      (c) Tan, M. ; Zhang, Y. Tetrahedron Lett. 2009, 50, 4912

    111. [111]

      Porwal, D.; Oestreich, M. Synthesis 2017, 49, 4698.  doi: 10.1055/s-0036-1588476

    112. [112]

      Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.; Gagné, M. R. Angew.Chem., Int.Ed. 2014, 53, 1646.  doi: 10.1002/anie.201306864

    113. [113]

      Berkefeld, A.; Piers, W. E.; Parvez, M. J.Am.Chem. Soc. 2010, 132, 10660.  doi: 10.1021/ja105320c

    114. [114]

      Chen, J. W.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J.Am.Chem.Soc. 2016, 138, 5321.  doi: 10.1021/jacs.6b01497

    115. [115]

      (a) Harrison, D. J. ; McDonald, R. ; Rosenberg, L. Organometallics 2005, 24, 1398.
      (b) Lee, P. T. K. ; Skjel, M. K. ; Rosenberg, L. Organometallics 2013, 32, 1575.
      (c) Saito, K. ; Kondo, K. ; Akiyama, T. Org. Lett. 2015, 17, 3366-3369

    116. [116]

      (a) Blackwell, J. M. ; Sonmor, E. R. ; Scoccitti, T. ; Piers, W. E. Org. Lett. 2000, 2, 3921.
      (b) Mewald, M. ; Oestreich, M. Chem. -Eur. J. 2012, 18, 14079.
      (c) Hermeke, J. ; Mewald, M. ; Oestreich, M. J. Am. Chem. Soc. 2013, 135, 17537

    117. [117]

      (a) Rubin, M. ; Schwier, T. ; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936.
      (b) Simonneau A. ; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 11905.
      (c) Lee, P. T. K. ; Rosenberg, L. Dalton Trans. 2017, 46, 8818.
      (d) Zhang, L. W. ; Wen, Z. G. ; Borzov, M. ; Nie, W. L. Acta Chim. Sinica 2017, 75, 819(in Chinese).
      (张露文, 温志国, Borzov Maxim, 聂万丽, 化学学报, 2017, 75, 819. )

    118. [118]

      (a) Gandhamsetty, N. ; Jeong, J. ; Park, J. ; Park, S. ; Chang, S. J. Org. Chem. 2015, 80, 7281.
      (b) Gandhamsetty, N. ; Park, J. ; Jeong, J. ; Park, S. W. ; Park, S. ; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 6832

    119. [119]

      Han, Y. X.; Zhang, S. T.; He, J. H.; Zhang, Y. T. J.Am. Chem.Soc. 2017, 139, 7399.  doi: 10.1021/jacs.7b03534

    120. [120]

      Curless, L. D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem. Commun. 2014, 50, 5270.  doi: 10.1039/C3CC47372D

    121. [121]

      (a) Ma, Y. H. ; Wang, B. L. ; Zhang, L. ; Hou, Z. M. J. Am. Chem. Soc. 2016, 138, 3663.
      (b) Ma, Y. H. ; Zhang, L. ; Luo, Y. ; Nishiura, M. ; Hou, Z. M. J. Am. Chem. Soc. 2017, 139, 12434

    122. [122]

      Otten, E.; Neu, R. C.; Stephan, D. W. J.Am.Chem. Soc. 2009, 131, 9918.  doi: 10.1021/ja904377v

    123. [123]

      Wang, T.; Kehr, G.; Liu, L.; Grimme, S.; Daniliuc, C. G.; Erker, G. J. Am.Chem.Soc. 2016, 138, 4302.  doi: 10.1021/jacs.6b00325

    124. [124]

      Dureen, M. A.; Welch, G. C.; Gilbert, T. M.; Stephan, D. W. Inorg. Chem. 2009, 48, 9910.  doi: 10.1021/ic901590s

    125. [125]

      Chase, P. A.; Gille, A. L.; Gilbert, T. M.; Stephan, D. W. Dalton Trans. 2009, 7179.
       

    126. [126]

      Zhou, Q.; Zhang, L.; Meng, W.; Feng, X.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.  doi: 10.1021/acs.orglett.6b02610

    127. [127]

      Li, S.; Li, G.; Meng, W.; Du, H. J.Am.Chem.Soc. 2016, 138, 12956.  doi: 10.1021/jacs.6b07245

    128. [128]

      Fan, X. T.; Zheng, J. H.; Li, Z. H.; Wang, H. D. J.Am. Chem.Soc. 2015, 137, 4916.  doi: 10.1021/jacs.5b03147

    129. [129]

      Zheng, J.; Fan, X.; Zhou, B.; Li, Z. H.; Wang, H. Chem.Commun. 2016, 52, 4655.  doi: 10.1039/C6CC00347H

    130. [130]

      Yu, Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. Angew.Chem., Int.Ed. 2016, 55, 14807.  doi: 10.1002/anie.201608937

    131. [131]

      Caputo, C. B.; Stephan, D. W. Organometallics 2012, 31, 27.  doi: 10.1021/om200885c

    132. [132]

      Froemel, S.; Daniliuc, C. G.; Bannwarth, C.; Grimme, S.; Bussmann, K.; Kehr, G.; Erker, G. Dalton Trans. 2016, 45, 19230.  doi: 10.1039/C6DT04206F

    133. [133]

      Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H.-W.; Wagner, M. Chem.-Eur. J. 2016, 22, 3478.  doi: 10.1002/chem.201504791

    134. [134]

      Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. ACS Catal. 2016, 6, 1793.  doi: 10.1021/acscatal.5b02896

    135. [135]

      Chernichenko, K.; Lindqvist, M.; Kotai, B.; Nieger, M.; Sorochkina, K.; Papai, I.; Repo, T. J.Am.Chem.Soc. 2016, 138, 4860.  doi: 10.1021/jacs.6b00819

    136. [136]

      Liu, Y. Z.; Fan, X. T.; Li, Z. H.; Wang, H. D. Chem.Commun. 2017, 53, 10890.  doi: 10.1039/C7CC05028C

    137. [137]

      Chen, G.-Q.; Kehr, G.; Daniliuc, C. G.; Erker, G. Dalton Trans. 2016, 45, 6820.  doi: 10.1039/C6DT00857G

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(439)
  • Abstract views(14585)
  • HTML views(6278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return