Citation: Mu Weihua, Cheng Ruijiao, Shang Yingwei, He Renze, Li Dongli, Fu Mian. Experimental and Computational Research Progress on Cycloadditions of o-Carborane with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1327-1340. doi: 10.6023/cjoc201712044 shu

Experimental and Computational Research Progress on Cycloadditions of o-Carborane with Unsaturated Compounds

  • Corresponding author: Mu Weihua, weihua_mu@ynnu.edu.cn
  • The authors contributed equally to this work
  • Received Date: 29 December 2017
    Revised Date: 22 February 2018
    Available Online: 28 June 2018

    Fund Project: the National Natural Science Foundation of China 21363028Project supported by the National Natural Science Foundation of China (Nos. 21763033, 21363028) and the Innovative Training Program for College Students in Yunnan Provincethe National Natural Science Foundation of China 21763033

Figures(25)

  • o-Carboranes, as well as its derivative o-carborynes, can react with a variety of unsaturated compounds through cycloadditions and transform into various functionalized carboranes which have potential applications in many an area such as boron neutron capture therapy, catalytic systhesis and drug design. Recently, people have made remarkable achievements in the functionalization of o-carboranes and o-carborynes, especially in aspects of reaction condition optimization, selectivity controlling and reaction mechanism exploration. The most recent experimental achievements in the area of cycloaddition between o-carboranes and unsaturated compounds, alkenes, polycyclic or heterocyclic aromatics, in the past ten years are summarized. The reaction mechanisms and corresponding computational findings of o-carboryne-involved [2+2+2], [2+2+1], [2+2], [3+2], [4+2] and[5+2] cycloadditions are summarized and emphasized. Moreover, the prospects of future development in this area are discussed in the end.
  • 加载中
    1. [1]

      Zhang, J.; Xie, Z. Acc. Chem. Res. 2014, 47, 1623.  doi: 10.1021/ar500091h

    2. [2]

      Qiu, Z.; Xie, Z. Dalton Trans. 2014, 43, 4925.  doi: 10.1039/C3DT52711E

    3. [3]

      Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. J. Am. Chem. Soc. 2016, 138, 10531.  doi: 10.1021/jacs.6b05172

    4. [4]

      Dziedzic, R. M.; Martin, J. L.; Axtell, J. C.; Saleh, L. M. A.; Ong, T.-C.; Yang, Y. F.; Messina, M. S.; Rheingold, A. L.; Houk, K. N.; Spokoyny, A. M. J. Am. Chem. Soc. 2017, 139, 7729.  doi: 10.1021/jacs.7b04080

    5. [5]

      Bregadze, V. I. Chem. Rev. 1992, 92, 209.  doi: 10.1021/cr00010a002

    6. [6]

      Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.  doi: 10.1021/cr200038x

    7. [7]

      Zhang, J.; Xie, Z. Chem.-Asian J. 2010, 5, 1742.  doi: 10.1002/asia.201000175

    8. [8]

      Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. Rev. 1998, 98, 1515.  doi: 10.1021/cr941195u

    9. [9]

      Armstrong, A. F.; Valliant, J. F. Dalton Trans. 2007, 4240.
       

    10. [10]

      Sivaev, I. B.; Bregadze, V. V. Eur. J. Inorg. Chem. 2009, 1433.
       

    11. [11]

      Zhu, Y.; Peng, A. T.; Carpenter, K.; Maguire, J. A.; Hosmane, N. S.; Takagaki, M. J. Am. Chem. Soc. 2005, 127, 9875.  doi: 10.1021/ja0517116

    12. [12]

      Chen, G.; Yang, J.; Lu, G.; Liu, P. C.; Chen, Q.; Xie, Z.; Wu, C. Mol. Pharmaceutics 2014, 11, 3291.  doi: 10.1021/mp400641u

    13. [13]

      Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267.  doi: 10.1021/ar9501479

    14. [14]

      Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.  doi: 10.1021/ja053050i

    15. [15]

      Xie, Z. Acc. Chem. Res. 2003, 36, 1.  doi: 10.1021/ar010146i

    16. [16]

      Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.  doi: 10.1016/j.ccr.2013.02.004

    17. [17]

      Popescu, A. R.; Teixidor, F.; Viñas, C. Coord. Chem. Rev. 2014, 269, 54.  doi: 10.1016/j.ccr.2014.02.016

    18. [18]

      Gingrich, H. L.; Ghosh, T.; Huang, Q.; Jones, M. Jr. J. Am. Chem. Soc. 1990, 112, 4082.  doi: 10.1021/ja00166a080

    19. [19]

      Ho, D. M.; Cunningham, R. J.; Brewer, J. A.; Bian, N.; Jones, M. Jr. Inorg. Chem. 1995, 34, 5274.  doi: 10.1021/ic00125a028

    20. [20]

      Jones, M. Jr.; Levin, R. H. J. Am. Chem. Soc. 1969, 91, 6411.  doi: 10.1021/ja01051a039

    21. [21]

      Kiran, B.; Anoop, A.; Jemmis, E. D. J. Am. Chem. Soc. 2002, 124, 4402.  doi: 10.1021/ja016843n

    22. [22]

      Cunningham, R. J.; Bian, N.; Jones, M. Jr. Inorg. Chem. 1994, 33, 4811.  doi: 10.1021/ic00100a001

    23. [23]

      Ghosh, T.; Gingrich, H. L.; Kam, C. K.; Mobraaten, E. C.; Jones, M., Jr. J. Am. Chem. Soc. 1991, 113, 1313.  doi: 10.1021/ja00004a036

    24. [24]

      Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2005, 127, 13774.  doi: 10.1021/ja054207+

    25. [25]

      Huang, Q.; Gingrich, H. L.; Jones, M. Jr. Inorg. Chem. 1991, 30, 3254.  doi: 10.1021/ic00017a007

    26. [26]

      Ren, S.; Chan, H.-S.; Xie, Z. Organometallics 2009, 28, 4106.  doi: 10.1021/om9002973

    27. [27]

      Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. 2015, 127, 10769.  doi: 10.1002/ange.201504481

    28. [28]

      Lu, J.-Y.; Du, Y.; Zhao, B.; Lu, J. Tetrahedron 2016, 72, 161.  doi: 10.1016/j.tet.2015.11.019

    29. [29]

      Ni, H.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2017, 56, 712.  doi: 10.1002/anie.201610810

    30. [30]

      Zheng, F.; Leung, T.-F.; Chan, K.-W.; Sung, H. H. Y.; Williams, I. D.; Xie, Z.; Jia, G. Chem. Commun. 2016, 52, 10767.  doi: 10.1039/C6CC05283E

    31. [31]

      Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.  doi: 10.1021/jacs.6b07086

    32. [32]

      Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.  doi: 10.1021/jacs.5b01169

    33. [33]

      Liu, G.; Yan, H. Organometallics 2015, 34, 591.  doi: 10.1021/om501016w

    34. [34]

      Zhao, D.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 3166.  doi: 10.1002/anie.201511251

    35. [35]

      Cheng, R.; Zhang, J.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1751.  doi: 10.1002/anie.201507952

    36. [36]

      Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 11840.  doi: 10.1002/anie.201605880

    37. [37]

      Chan, T. L.; Xie, Z. Chem. Commun. 2016, 52, 7280.  doi: 10.1039/C6CC03368G

    38. [38]

      Wang, Z.; Ye, H.; Li, Y.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.  doi: 10.1021/ja4047075

    39. [39]

      Wang, S. R.; Xie, Z. Organometallics 2012, 31, 4544.  doi: 10.1021/om300324n

    40. [40]

      Tang, C.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 7662.  doi: 10.1002/anie.201502502

    41. [41]

      Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1295.  doi: 10.1002/anie.201507697

    42. [42]

      Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.  doi: 10.1021/ar100156f

    43. [43]

      Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.  doi: 10.1021/ja509557j

    44. [44]

      Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.  doi: 10.1021/ja405808t

    45. [45]

      Wang, S. R.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2011, 133, 5760.  doi: 10.1021/ja201126h

    46. [46]

      Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014, 53, 12902.  doi: 10.1002/anie.201409141

    47. [47]

      Visbal, R.; Ospino, I.; Lopez-De-Luzuriaga, J. M.; Laguna, A.; Gimeno, M. C. J. Am. Chem. Soc. 2013, 135, 4712.  doi: 10.1021/ja401523x

    48. [48]

      Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.  doi: 10.1039/C5CC03608A

    49. [49]

      Jin, G. F.; Hwang, J.-H.; Lee, J.-D.; Wee, K.-R.; Suh, I.-H.; Kang, S. O. Chem. Commun. 2013, 49, 9398.  doi: 10.1039/c3cc45313h

    50. [50]

      Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Cheong, M.; Ko, J.; Kang, S. O. Organometallics 2007, 26, 3374.  doi: 10.1021/om0701569

    51. [51]

      Brown, D. A.; Colquhoun, H. M.; Daniels, J. A.; MacBride, J. A. H.; Stephenson, I. R.; Wade, K. J. Mater. Chem. 1992, 2, 793.  doi: 10.1039/jm9920200793

    52. [52]

      Zhang, X.; Zou, X.; Yan, H. Organometallics 2014, 33, 2661.  doi: 10.1021/om500411b

    53. [53]

      Cioran, A. M.; Musteti, A. D.; Teixidor, F.; Krpetic, Ž.; Prior, I. A.; He, Q.; Kiely, C. J.; Brust, M.; Viñas, C. J. Am. Chem. Soc. 2012, 134, 212.  doi: 10.1021/ja203367h

    54. [54]

      Grimes, R. N. Dalton Trans. 2015, 44, 5939.  doi: 10.1039/C5DT00231A

    55. [55]

      Wee, K.-R.; Cho, Y.-J.; Jeong, S.; Kwon, S.; Lee, J.-D.; Suh, I.-H.; Kang, S. O. J. Am. Chem. Soc. 2012, 134, 17982.  doi: 10.1021/ja3066623

    56. [56]

      Wee, K.-R.; Han, W.-S.; Cho, D. W.; Kwon, S.; Pac, C.; Kang, S. O. Angew. Chem. Int. Ed. 2012, 51, 2677.  doi: 10.1002/anie.201109069

    57. [57]

      Shi, C.; Sun, H.; Tang, X.; Lv, W.; Yan, H.; Zhao, Q.; Wang, J.; Huang, W. Angew. Chem., Int. Ed. 2013, 52, 13434.  doi: 10.1002/anie.201307333

    58. [58]

      Bian, D.; Nie, Y.; Miao, J.; Wang, Y.; Zhang, Z. Chin. J. Org. Chem. 2013, 33, 1774(in Chinese).
       

    59. [59]

      Zhu, L.; Jiang, Q.-B.; Yan, H. Chin. J. Inorg. Chem. 2014, 30, 2246(in Chinese).
       

    60. [60]

      Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2006, 128, 7728.  doi: 10.1021/ja061605j

    61. [61]

      Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.  doi: 10.1021/ja410233e

    62. [62]

      Yuan, Y. G.; Ren, S. K.; Qiu, Z. Z.; Wang, S. W.; Xie, Z. W. Sci. China:Chem. 2014, 57, 1157.  doi: 10.1007/s11426-014-5112-0

    63. [63]

      Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2013, 32, 4292.  doi: 10.1021/om400458r

    64. [64]

      Zhang, J.; Qiu, Z.; Xu, P.-F.; Xie, Z. ChemPlusChem 2014, 79, 1044.  doi: 10.1002/cplu.201402129

    65. [65]

      Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 13938.  doi: 10.1021/jacs.5b09074

    66. [66]

      Zhao, D.; Xie, Z. Coord. Chem. Rev. 2016, 314, 14.  doi: 10.1016/j.ccr.2015.07.011

    67. [67]

      Qiu, Z. Tetrahedron Lett. 2015, 56, 963.  doi: 10.1016/j.tetlet.2015.01.038

    68. [68]

      Xie, Z. W. Sci. China:Chem. 2014, 57, 1061.

    69. [69]

      Qiu, Z. Z.; Xie, Z. W. Sci. China, Ser. B:Chem. 2009, 39, 1544.
       

    70. [70]

      Zhang, J.; Xie, Z. Pure Appl. Chem. 2013, 85, 661.

    71. [71]

      Qiu, Z. Z.; Xie, Z. W. Sci. China, Ser. B:Chem. 2009, 39, 1053(in Chinese).
       

    72. [72]

      Gulinsha, G.; Zhang, R.; Yan, H. Chin. J. Inorg. Chem. 2010, 26, 733(in Chinese).
       

    73. [73]

      Patel, R. M.; Argade, N. P. Org. Lett. 2013, 15, 14.  doi: 10.1021/ol3028658

    74. [74]

      Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 113.  doi: 10.1002/anie.201105921

    75. [75]

      Shi, D.; Xie, Y.; Zhou, H.; Xia, C.; Huang, H. Angew. Chem. 2012, 124, 1274.  doi: 10.1002/ange.201107495

    76. [76]

      Qiu, Z. Ph. D. Dissertation, Chinese University of Hong Kong, Hong Kong, 2012.

    77. [77]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 2084.  doi: 10.1021/ja809389k

    78. [78]

      Qiu, Z.; Wang, S. R.; Xie, Z. Angew. Chem., Int. Ed. 2010, 49, 4649.  doi: 10.1002/anie.201001249

    79. [79]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 16085.  doi: 10.1021/ja1058789

    80. [80]

      Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.  doi: 10.1021/ja211485t

    81. [81]

      Ren, S.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2012, 51, 1010.  doi: 10.1002/anie.v51.4

    82. [82]

      Mu, W.-H.; Xia, S.-Y.; Li, J.-X.; Fang, D.-C.; Wei, G.; Chass, G. A. J. Org. Chem. 2015, 80, 9108.  doi: 10.1021/acs.joc.5b01464

    83. [83]

      Sayler, A. A.; Beall, H.; Sieckhaus, J. F. J. Am. Chem. Soc. 1973, 95, 5790.  doi: 10.1021/ja00798a074

    84. [84]

      Qiu, Z.; Deng, L.; Chan, H.-S.; Xie, Z. Organometallics 2010, 29, 4541.  doi: 10.1021/om100669x

    85. [85]

      Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.  doi: 10.1021/om5004545

    86. [86]

      Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.  doi: 10.1021/ja503489b

    87. [87]

      Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 9423.  doi: 10.1021/jacs.5b05426

    88. [88]

      Ren, S.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 3862.  doi: 10.1021/ja900563u

    89. [89]

      Naito, H.; Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed. 2015, 54, 5084.  doi: 10.1002/anie.v54.17

    90. [90]

      Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2012, 31, 4435.  doi: 10.1021/om300202p

    91. [91]

      Harmgarth, N.; Gräsing, D.; Dröse, P.; Hrib, C. G.; Jones, P. G.; Lorenz, V.; Hilfert, L.; Busse, S.; Edelmann, F. T. Dalton Trans. 2014, 43, 5001.  doi: 10.1039/C3DT52751D

    92. [92]

      Brinkley, J. M.; Friedman, L. Tetrahedron Lett. 1972, 28, 4141.
       

    93. [93]

      Reinecke, M. G.; Mazza, D. D. J. Org. Chem. 1989, 54, 2142.  doi: 10.1021/jo00270a024

    94. [94]

      Barnett-Thamattoor, L.; Zheng, G.-X.; Ho, D. M.; Jones, M. Jr. Inorg. Chem. 1996, 35, 7311.  doi: 10.1021/ic960284h

    95. [95]

      Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.  doi: 10.1016/S0040-4020(02)01563-6

    96. [96]

      Lee, T.; Jeon, J.; Song, K. H.; Jung, I.; Baik, C.; Park, K.-M.; Lee, S. S.; Kang, S. O.; Ko, J. Dalton Trans. 2004, 933.

    97. [97]

      Jeon, J.; Kitamura, T.; Yoo, B.-W.; Kang, S. O.; Ko, J. Chem. Commun. 2001, 2110.
       

    98. [98]

      Wang, S. R.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 9988.  doi: 10.1021/ja1044488

    99. [99]

      Wang, S. R.; Xie, Z. Organometallics 2012, 31, 3316.  doi: 10.1021/om300129t

    100. [100]

      Wang, S. R.; Xie, Z. Tetrahedron 2012, 68, 5269.  doi: 10.1016/j.tet.2012.02.049

    101. [101]

      Huo, R.-P.; Guo, L.-H.; Zhang, F.-Q.; Zhang, X. Int. J. Quantum Chem. 2017, 117, e25372.  doi: 10.1002/qua.v117.12

    102. [102]

      Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014, 53, 8488.  doi: 10.1002/anie.v53.32

    103. [103]

      Mu, W.; Ma, Y.; Fang, D.; Wang, R.; Zhang, H. Acta Chim. Sinica 2018, 76, 55(in Chinese).  doi: 10.11862/CJIC.2018.009

    104. [104]

      Zhang, J.; Qiu, Z.; Xie, Z. Organometallics 2017, 36, 3806.  doi: 10.1021/acs.organomet.7b00574

    105. [105]

      Li, H. Ph. D. Dissertation, Nanjing University, Nanjing, 2017 (in Chinese).

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    18. [18]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(8)
  • Abstract views(2989)
  • HTML views(349)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return