Citation: Ma Nan, Zeng Xianghua. Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1556-1561. doi: 10.6023/cjoc201712038 shu

Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases

  • Corresponding author: Zeng Xianghua, xianghuazeng@mail.zjxu.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 31 January 2018
    Available Online: 11 June 2018

    Fund Project: the National Natural Science Foundation of Zhejiang Province LY17B030011Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014)the Jiaxing Science and Technology Project 2015AY11014

Figures(4)

  • A high efficient method for the synthesis of 1, 3-diynes derivatives which employed terminal alkynes as the substrates and copper(I) oxide as the catalyst was developed. This method possessed the character of base-free and mild reaction conditions. The reaction mechanism was also studied. Furthermore, this reaction could be magnified to gram scale and the catalyst of copper(I) oxide could be recycled.
  • 加载中
    1. [1]

      (a) Lerch, M. L. ; Harper, M. K. ; Faulkner, D. J. J. Nat. Prod. 2003, 66, 667.
      (b) Lechner, D. ; Stavri, M. ; Oluwatuyi, M. ; Perda-Miranda, R. ; Gibbons, S. Phytochemistry 2004, 65, 331.
      (c) Constable, C. P. ; Towers, G. H. N. Planta Med. 1989, 55, 35.
      (d) Zhou, Y. Z. ; Ma, H. Y. ; Chen, H. ; Qiao, L. ; Yao, Y. ; Cao, J. Q. ; Pei, Y. H. Chem. Pharm. Bull. 2006, 54, 1455.
      (e) Ladika, M. ; Fisk, T. E. ; Wu, W. W. ; Jons, S. D. J. Am. Chem. Soc. 1994, 116, 12093.
      (f) Mayer, S. F. ; Steinreiber, A. ; Orru, R. V. A. ; Faber, K. J. Org. Chem. 2002, 67, 9115.
      (g) Zeni, G. ; Panatieri, R. B. ; Lissner, E. ; Menezes, P. H. ; Braga, A. L. ; Stefani, H. A. Org. Lett. 2001, 3, 819.
      (h) Stüts, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 320.

    2. [2]

      (a) Gholami, M. ; Tykwinski, R. R. Chem. Rev. 2006, 106, 4997.
      (b) Baxter, P. N. W. ; Dali-Youcef, R. J. Org. Chem. 2005, 70, 4935.
      (c) Marsden, J. A. ; Haley, M. M. J. Org. Chem. 2005, 70, 10213.

    3. [3]

      (a) Cataldo, F. In Polyynes: Synthesis Properties, and Applications, CRC Press/Taylor & Francis, Boca Raton, Florida, 2005.
      (b) Diederich, F. ; Stang, P. J. ; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005.

    4. [4]

      Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem.Soc.Rev. 2009, 38, 1530.  doi: 10.1039/b804243h

    5. [5]

      Glaser, C. Ber.Dtsch.Chem.Ges. 1869, 2, 422.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Chen, L.; Lemma, B. E.; Rich, J. S.; Mack, J. Green Chem. 2014, 16, 1101.  doi: 10.1039/C3GC41847B

    7. [7]

      Mo, G.; Tian, Z.; Li, J.; Wen, G.; Yang, X. Appl. Organomet.Chem. 2015, 29, 231.  doi: 10.1002/aoc.v29.4

    8. [8]

      (a) Leyva-Pérez, A. ; Doménech, A. ; Al-Resayes, S. I. ; Corma, A. ACS Catal. 2012, 2, 121.
      (b) Peng, H. ; Xi, Y. ; Ronaghi, N. ; Dong, B. ; Akhmedov, G. N. ; Shi, X. J. Am. Chem. Soc. 2014, 136, 13174.

    9. [9]

      (a) Fan, X. ; Li, N. ; Shen, T. ; Cui, X. -M. ; Lv, H. ; Zhu, H. -B. ; Guan, Y. -H. Tetrahedron 2014, 70, 256.
      (b) Yin, K. ; Li, C. -J. ; Li, J. ; Jia, X. -S. Appl. Organomet. Chem. 2011, 25, 16.
      (c) Navale, B. S. ; Bhat, R. G. RSC Adv. 2013, 3, 5220.
      (d) Zhang, S. ; Liu, X. ; Wang, T. Adv. Synth. Catal. 2011, 353, 1463.
      (e) Jia, X. ; Yin, K. ; Li, C. ; Li, J. ; Bian, H. Green Chem. 2011, 13, 2175.
      (f) Balaraman, K. ; Kesavan, V. Synthesis 2010, 3461.
      (g) Kusuda, A. ; Xu, X. -F. ; Wang, X. ; Tokunaga, E. ; Shibata, N. Green Chem. 2011, 13, 843.
      (h) Adimurthy, S. ; Malakar, C. C. ; Beifuss, U. J. Org. Chem. 2009, 74, 5648.
      (i) Yin, K. ; Li, C. ; Li, J. ; Jia, X. Green Chem. 2011, 13, 591.
      (j) Wang, D. ; Li, J. ; Li, N. ; Gao, T. ; Hou, S. ; Chen, B. Green Chem. 2010, 12, 45.
      (k) Kabalka, G. W. ; Wang, L. ; Pagni, R. M. Synlett 2001, 108.
      (l) Li, Y. -N. ; Wang, J. -L. ; He, L. -N. Tetrahedron Lett. 2011, 52, 3485.
      (m) Sagadevan, A. ; Charpe, V. P. ; Hwang, K. C. Catal. Sci. Technol. 2016, 6, 7688.
      (n)Sagadevan, A. ; Lyu, P. -C. ; Hwang, K. C. Green Chem. 2016, 18, 4526.
      (o) Oishi, T. ; Katayama, T. ; Yamaguchi, K. ; Mizuno, N. Chem. Eur. J. 2009, 15, 7539.
      (p) Oishi, T. ; Yamaguchi, K. ; Mizuno, N. ACS Catal. 2011, 1, 1351.
      (q) Zhu, Y. ; Shi, Y. Org. Biomol. Chem. 2013, 11, 7451.
      (r) Kamata, K. ; Yamaguchi, S. ; Kotani, M. ; Yamaguchi, K. ; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407.

    10. [10]

      Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem.Rev. 2013, 113, 6234.  doi: 10.1021/cr300527g

    11. [11]

      Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org.Lett. 2009, 11, 709.  doi: 10.1021/ol8027863

    12. [12]

      Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc.Chem.Res. 2017, 50, 1894.  doi: 10.1021/acs.accounts.7b00232

    13. [13]

      Tang, B.-X.; Fang, X.-N.; Kuang, R.-Y.; Wu, J.-H.; Chen, Q.; Hu, S.-J.; Liu, Y.-L. Appl.Organomet.Chem. 2016, 30, 943.  doi: 10.1002/aoc.v30.11

    14. [14]

      Su, L.; Dong, J.; Liu, H.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S.-F. J. Am.Chem.Soc. 2016, 138, 12348.  doi: 10.1021/jacs.6b07984

    15. [15]

      Xu, H.; Wu, K.; Tian, J.; Zhu, L.; Yao, X. Green Chem. 2018, 20, 793.  doi: 10.1039/C7GC03120C

    16. [16]

      Theunissen, C.; Evano, G. Org.Lett. 2014, 16, 4488.  doi: 10.1021/ol502030y

    17. [17]

      Chinchilla, R.; Najera, C. Chem.Soc.Rev. 2011, 40, 5084.  doi: 10.1039/c1cs15071e

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    7. [7]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

Metrics
  • PDF Downloads(22)
  • Abstract views(1328)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return