Citation: Sheng Lili, Shan Zixing, Guo Xiaoyan, Yang Rongjie. Synthesis, Characterization and Thermal Behavior of Bis(dialkyl-5-aminotetrazolium) Dodecadodecaborates[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2093-2100. doi: 10.6023/cjoc201712022 shu

Synthesis, Characterization and Thermal Behavior of Bis(dialkyl-5-aminotetrazolium) Dodecadodecaborates

  • Corresponding author: Yang Rongjie, yrj@bit.edu.cn
  • Received Date: 15 December 2017
    Revised Date: 20 March 2018
    Available Online: 3 August 2018

    Fund Project: Project supported by the Fund of PLAʼs Equipment Development Department

Figures(4)

  • We tried combining dodecahydrodecaborane anion (B12H122-) with aminotetrazole cation into a series of new borohydrino-tetrazolium salt as a kind of energetic materials. Firstly, by using 1-or 2-5-aminotetrazole (5-ATZ) as the raw material, dialkylated 5-aminotetrazolium iodide was synthesized via dialkylation reaction with methyl iodide and ethyl iodide. And then, the dialkylated 5-aminotetrazolium iodides was used to react with potassium dodecylhydrodecaborate in an aqueous solution by metathesis. Finally, eleven novel bis(dialkyl-5-aminotetrazolium) dodecahydrododecaborates were synthesized. All of them were in yield of above 70%, and their chemical properties were stable under the conditions of purification and drying. These compounds have been characterized by FT-IR, 1H NMR, 13C NMR, 11B NMR, mass spectrometry, and elemental analysis. In inspecting their thermal properties using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) technologies, the results showed that eleven kinds of bis(dialkyl-5-aminotetrazolium) dodecahydrododecaborates have higher thermal stability and the thermal decomposition temperatures of them are mostly above 200℃. In molecular structures, their thermal stability decrease with the increase of the 4-position alkyl when the 1-position alkyl maintains the same. The rapid thermal decomposition of the five compounds, 1, 4-dimethyl, 1-methyl-4-ethyl, 1, 3-dimethyl, 1-methyl-3-ethyl, and 1-ethyl-3-methyl, occurred before the melting, and the rapid thermal decomposition of the other 6 compounds occurred after the crystals melting. These high-energetic compounds are of great importance in developing new high-performance propellants.
  • 加载中
    1. [1]

      Balucani, N.; Zhang, F. T.; Kaiser, R. I. Chem. Rev. 2010, 110, 5107.  doi: 10.1021/cr900404k

    2. [2]

      Hansen, B. R. S.; Paskevicius, M.; Li, H. W.; Akiba, E.; Jensen, T. R. Coord. Chem. Rev. 2015, 323, 60.

    3. [3]

      Tang, S. Q.; Ding, H. X. J. Propul. Technol. 1983, 4, 35(in Chinese).

    4. [4]

      Wang, W. Q.; Xue, Y. N.; Yang, J. M.; Li, Y. N.; Yu, Q. W.; Mei, S. N. Chin. J. Energy Mater. 2012, 20, 132.

    5. [5]

      Shan, Z. X.; Sheng, L. L.; Yang, R. J. Chin. J. Explos. Propell. 2017, 40, 1(in Chinese).

    6. [6]

      Gao, X.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.  doi: 10.1021/cr200039c

    7. [7]

      Li, Y. L.; Xue, M.; Wang, J. L.; Cao, D. L.; Ma, Z. L. Chin. J. Org. Chem. 2016, 36, 1528(in Chinese).
       

    8. [8]

      Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew. Chem., Int. Ed. 2006, 45, 3584.  doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Hiskey, M.; Chavez, D.; Son, S. F. Proc. 27th International Pyrotechnics Seminar, Colorado, USA, 2000, pp. 3~14.

    10. [10]

      Klapötke, T. M. Struct. Bonding 2007, 125, 85.  doi: 10.1007/978-3-540-72202-1

    11. [11]

      Miller, C. G.; Williams, G. K. US 0199937, 2009.

    12. [12]

      Miller, C. G.; Williams, G. K. US 0099111, 2008.

    13. [13]

      Zhang, S. H.; Han, L.; Wang, X. D. Chin. J. Luoyang Normal Univ. 2005, 5, 74(in Chinese).

    14. [14]

      Veronika, E.; Klapötke, T. M.; Jörg, S. Z. Anorg. Allg. Chem. 2010, 633, 879.

    15. [15]

      Herbst, R. M.; Garrison, J. A. J. Org. Chem. 1953, 18, 941.  doi: 10.1021/jo50014a007

    16. [16]

      Denffer, M. V.; Klapötke, T. M.; Heeb, G. Propellants, Explos., Pyrotech. 2005, 30, 191.  doi: 10.1002/(ISSN)1521-4087

    17. [17]

      Rittenhouse, C. T.; Ariz, G. US 3663553, 1972.

    18. [18]

      Sinditskii, V. P.; Fogelzang, A. E.; Levshenkov, A. I. Proceedings of the 21st International Pyrotechnics Seminar, Beijing, 1995, pp. 762~773.

    19. [19]

      Denffer, M. V.; Klapötke, T. M.; Sabat, C. M. Z. Anorg. Allg. Chem. 2008, 634, 2575.  doi: 10.1002/zaac.v634:14

    20. [20]

      Brill, T. B.; Ramanathan, H. Combust. Flame 2000, 122, 165.  doi: 10.1016/S0010-2180(00)00111-5

    21. [21]

      Jin, C.; Ye, C.; Piekarski, C.; Twamley, B.; Shreeve, J. M. Eur. J. Inorg. Chem. 2005, 18, 3760.

    22. [22]

      Zhang, Q.; Shreeve, J. M. Chem. Rev. 2014, 114, 10527.  doi: 10.1021/cr500364t

    23. [23]

      Mccrary, P. D.; Barber, P. S.; Kelley, S. P.; Rogers, R. D. Inorg. Chem. 2014, 53, 4770.  doi: 10.1021/ic500622f

    24. [24]

      Zhang, W.; Qi, X.; Huang, S.; Li, J.; Tang, C.; Li, J. J. Mater. Chem. A 2016, 4, 8978.  doi: 10.1039/C6TA02699K

    25. [25]

      Xue, Y. N.; Wang, W. Q.; Li, J. Y.; Lu, J. Y.; Lü, J. Chin. Energy Mater. 2016, 24, 274(in Chinese).  doi: 10.11943/j.issn.1006-9941.2016.03.011

    26. [26]

      Rao, M. H.; Muralidharan, K. Polyhedron 2016, 115, 105.  doi: 10.1016/j.poly.2016.03.062

    27. [27]

      Janiak, C.; Esser, L. Chem. Sci. 1993, 48, 394.

    28. [28]

      Belletire, J. L.; Schneider, S.; Wight, B. A.; Strauss, S. L.; Shackelford, S. A. Synth. Commun. 2012, 42, 155.  doi: 10.1080/00397911.2010.520543

    29. [29]

      Thomas, M. K.; Karaghiosoff, K.; Mayer, P.; Penger, A.; Jan, M. W. Propellants, Explos., Pyrotech. 2006, 31, 188.  doi: 10.1002/(ISSN)1521-4087

    30. [30]

      Thomas, M, K.; Carles, M. S.; Magdalena, R. Z. Anorg. Allg. Chem. 2008, 634, 688.  doi: 10.1002/(ISSN)1521-3749

    31. [31]

      Herbst, R. M.; Percival, D. F. J. Org. Chem. 1954, 17, 439.

    32. [32]

      Murphy, D. B.; Picard, J. P. J. Org. Chem. 1954, 17, 1807.

    33. [33]

      Henry, R. A.; Finnegan, W. G. J. Am. Chem. Soc. 1954, 76, 923.  doi: 10.1021/ja01632a094

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(5)
  • Abstract views(1656)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return