Citation: Lu Shengle, Tu Xianxia, Liu Weishun, Shen Liting, Mao Shanjian, Deng Guisheng. Transition Metal-Free-Catalyzed Regioselective Reversal in the Cyclization of 2-Diazo-3, 5-dioxo-6-ynoates/ynones/ynamide: Synthesis of Diazo γ-Pyrones and Diazo 3(2H)-Furanones[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1663-1672. doi: 10.6023/cjoc201712014 shu

Transition Metal-Free-Catalyzed Regioselective Reversal in the Cyclization of 2-Diazo-3, 5-dioxo-6-ynoates/ynones/ynamide: Synthesis of Diazo γ-Pyrones and Diazo 3(2H)-Furanones

  • Corresponding author: Deng Guisheng, gsdeng@hunnu.edu.cn
  • Received Date: 7 December 2017
    Revised Date: 6 March 2018
    Available Online: 12 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21372071) and the Hunan Provincial Natural Science Foundation (No. 2016JJ2080)the National Natural Science Foundation of China 21372071the Hunan Provincial Natural Science Foundation 2016JJ2080

Figures(4)

  • For HSbF6/EtOH system, diazo γ-pyrones were cleanly obtained starting from 2-diazo-3, 5-dioxo-6-ynoates/ynones/ynamide at 80℃, whereas diazo 3(2H)-furanones were predominantly generated in HOAc-Et3N-1, 2-dichloroethane system at 25℃. These diazo compounds can undergo an efficient Rh(Ⅱ)-catalyzed intermolecular cyclopropanation with alkene.
  • 加载中
    1. [1]

      For 4-pyrone see: (a) Caturla, F. ; Jiménez, J. -M. ; Godessart, N. ; Amat, M. ; Cárdenas, A. ; Soca, L. ; Beleta, J. ; Ryder, H. ; Crespo, M. I. J. Med. Chem. 2004, 47, 3874.
      (b) Abe, I. ; Utsumi, Y. ; Oguro, S. ; Morita, H. ; Sano, Y. ; H. J. Am. Chem. Soc. 2005, 127, 1362.
      (c) Puerta, D. T. ; Mongan, J. ; Tran, B. L. ; McCammon, J. A. ; Cohen, S. M. J. Am. Chem. Soc. 2005, 127, 14148.
      (d) Sibi, M. P. ; Zimmerman, J. J. Am. Chem. Soc. 2006, 128, 13346.
      (e) Hollick, J. J. ; Rigoreau, L. J. ; Cano-Soumillac, C. ; Cockcroft, X. ; Curtin, N. J. ; Frigerio, M. ; Golding, B. T. ; Guiard, S. ; Hardcastle, I. R. ; Hickson, I. J. Med. Chem. 2007, 50, 1958.
      For 3(2H)-furanone see: (f) Li Y. ; Hale K. J. Org. Lett. 2007, 9, 1267.
      (g) Mitchell, J. M. ; Finney, N. S. Org. Biomol. Chem. 2005, 3, 4274.
      (h) Hayashi, Y. ; Shoji, M. ; Yamaguchi, S. ; Mukaiyama, T. ; Yamaguchi, J. ; Kakeya, H. ; Osada, H. Org. Lett. 2003, 5, 2287.

    2. [2]

      (a) Yamamura, S. ; Nishiyama, S. Bull. Chem. Soc. Jpn. 1997, 70, 2025.
      (b) Sharma, P. ; Powell, K. J. ; Burnley, J. ; Awaad, A. S. ; Moses, J. E. Synthesis 2011, 2865.
      (c) Hayakawa, I. ; Takemura, T. ; Fukasawa, E. ; Ebihara, Y. ; Sato, N. ; Nakamura, T. ; Suenaga, K. ; Kigoshi, H. Bull. Chem. Soc. Jpn. 2012, 85, 1077.
      (d) Martens, S. ; Mithofer, A. Phytochemicals 2005, 66, 2399.
      (e) Veitch, N. C. ; Grayer, R. J. Nat. Prod. Rep. 2008, 25, 555.
      (f) Crozier, A. ; Jaganath, I. B. ; Clifford, M. N. Nat. Prod. Rep. 2009, 26, 1001.
      (g) Hansen, M. R. ; Hurley, L. H. Acc. Chem. Res. 1996, 29, 249.

    3. [3]

      For 4-pyrone see: (a) Grarey, D. ; Ramirez, M. ; Gonzales, S. ; Wertsching, A. ; Tith, S. ; Keefe, K. ; Pea, M. R. J. Org. Chem. 1996, 61, 4853.
      (b) Ishibashi, Y. ; Ohba, S. ; Nishiyama, S. ; Yamamura, S. Tetrahedron Lett. 1996, 37, 2997.
      (c) Jo, Y. J. ; Cho, I. H. ; Song, C. K. ; Shin, H. W. ; Kim, Y. S. J. Food Sci. 2011, 76, C368.
      (d) Li, D. -F. ; Hu, P. -P. ; Liu, M. -S. ; Kong, X. -L. ; Zhang, J. -C. ; Hider, R. C. ; Zhou, T. J. Agric. Food. Chem. 2013, 61, 6597.
      (e) Shahrisa, A. ; Esmati, S. ; Miri, R. ; Firuzi, O. ; EdrakiN, N. ; Nejati, M. Eur. J. Med. Chem. 2013, 66, 388.
      For 3(2H)-furanone see: (f) Shin, S. S. ; Byun, Y. ; Lim, K. M. ; Choi, J. K. ; Lee, K. -W. ; Moh, J. H. ; Kim, J. K. ; Jeong, Y. S. ; Kim, J. Y. ; Choi, Y. H. ; Koh, H. -J. ; Park, Y. -H. ; Oh, Y. I. ; Noh, M. -S. ; Chung, S. J. Med. Chem. 2004, 47, 792.

    4. [4]

      Kankanala, J.; Kirby, K. A.; Liu, F.; Miller, L.; Nagy, E.; Wilson, D. J.; Parniak, M. A.; Sarafianos, S. G.; Wang, Z. J. Med. Chem. 2016, 59, 5051.  doi: 10.1021/acs.jmedchem.6b00465

    5. [5]

      For 4-pyrone see: (a) Obydennov, D. L. ; Pan'kina, E. O. ; Sosnovskikh, V. Y. J. Org. Chem. 2016, 81, 12532.
      (b) Dong, S. ; Fang, C. ; Tang, W. ; Lu, T. ; Du, D. Org. Lett. 2016, 18, 3882.
      (c) Henrot, M. ; Jean, A. ; Peixoto, P. A. ; Maddaluno, J. ; Paolis, M. D. J. Org. Chem. 2016, 81, 5190.
      (d) Danda, A. ; Kesave-Reddy, N. ; Golz, C. ; Strohmann, C. ; Kumar, K. Org. Lett. 2016, 18, 2632.
      (e) Beye, G. E. ; Karagiannis, A. ; Kazemeini, A. ; Ward, D. E. Can. J. Chem. 2012, 90, 954.
      For 3(2H)-furanone see: (f) Sadamitsu, Y. ; Komatsuki, K. ; Saito, K. ; Yamada, T. Org. Lett. 2017, 19, 3191.
      (g) Qiu, H. ; Deng, Y. ; Marichev, K. O. ; Doyle, M. P. J. Org. Chem. 2017, 82, 1584.
      (h) He, H. ; Qi, C. ; Hu, X. ; Ouyang, L. ; Xiong, W. ; Jiang, H. J. Org. Chem. 2015, 80, 4957.
      (i) Inagaki, S. ; Nakazato, M. ; Fukuda, N. ; Tamura, S. ; Kawano, T. J. Org. Chem. 2017, 82, 5583.

    6. [6]

      (a) Marei, M. G. ; El-Ghanam, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 107, 1.
      (b) Marei, M. G. ; El-Ghanam, M. Bull. Chem. Soc. Jpn. 1992, 65, 3509.
      (c) Marei, M. G. ; Aly, D. M. ; Mishrikey, M. M. Bull. Chem. Soc. Jpn. 1992, 65, 3419.
      (d) Marei, M. G. ; Mishrikey, M. M. ; El-Kholy, I. E. J. Heterocycl. Chem. 1986, 23, 1849.
      (e) El-Kholy, I. E. ; Mishrikey, M. M. ; Marei, M. G. J. Heterocycl. Chem. 1982, 19, 1421.
      (f) Kuroda, H. ; Izawa, H. Chin. J. Chem. 2008, 26, 1944.
      (g) Yoshida, M. ; Fujino, Y. ; Doi, T. Org. Lett. 2011, 13, 4526.
      (h) Yoshida, M. ; Fujino, Y. ; Saito, K. ; Doi, T. Tetrahedron 2011, 67, 9993.
      (i) Kuroda, H. ; Izawa, H. Bull. Chem. Soc. Jpn. 2007, 80, 780.
      (j) Preindl, J. ; Jouvin, K. ; Laurich, D. ; Seidel, G. ; Fürstner, A. Chem. -Eur. J. 2015, 21, 1.
      (k) García, H. ; Iborra, S. ; Primo, J. ; Miranda, M. A. J. Org. Chem. 1986, 51, 4432.
      (l) Brennan, C. M. ; Johnson, C. D. ; McDonnell, P. D. J. Chem. Soc., Perkin Trans. 2 1989, 957.
      (m) Liu, C. ; Zhang, Z. ; Zhang, J. ; Liu X. ; Xie, M. Chin. J. Chem. 2014, 32, 1233.

    7. [7]

      Doyle, M. P. ; McKervey, M. A. ; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.

    8. [8]

      Wang, F.; Lu, S.; Chen, B.; Zhou, Y.; Yang, Y.; Deng, G. Org. Lett. 2016, 18, 6248.  doi: 10.1021/acs.orglett.6b02973

    9. [9]

      Deng, G.; Wang, F.; Lu, S.; Cheng, B. Org. Lett. 2015, 17, 4651.  doi: 10.1021/acs.orglett.5b02369

    10. [10]

      (a) Yoshida, M. ; Fujino, Y. ; Doi, T. Org. Lett. 2011, 13, 4526.
      (b) Preindl, J. ; Jouvin, K. ; Laurich, D. ; Seidel, G. ; Fürstner, A. Chem.-Eur. J. 2016, 22, 237.

    11. [11]

      Vasilyev, A. V.; Walspurger, S.; Chassaing, S.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2007, 5740.

    12. [12]

      Vasilyev, A. V.; Walspurger, S.; Haouas, M.; Sommer, J.; Pale, P.; Rudenko, A. P. Org. Biomol. Chem. 2004, 2, 3483.  doi: 10.1039/b412323a

    13. [13]

      (a) Kawata, M. ; Ten-no, S. ; Kato, S. ; Hirata, F. J. Phys. Chem. 1996, 100, 1111.
      (b) Bordwell, F. G. ; McCallum, R. J. ; Olmstead, W. N. J. Org. Chem. 1984, 49, 1424.
      (c) Shukla, S. K. ; Kumar, A. J. Phys. Chem. B 2013, 117, 2456.
      (d) Bachrach, S. M. ; Dzierlenga, M. W. J. Phys. Chem. A 2011, 115, 5674.
      (e) Murłowska, K. ; Sadlej-Sosnowska, N. J. Phys. Chem. A 2005, 109, 5590.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(9)
  • Abstract views(821)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return