Citation: Zhao Liang, Zhou Shengbin, Tong Junhua, Wang Jiang, Liu Hong. Asymmetric Synthesis of 3, 5-Disubstituted Prolines[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1437-1446. doi: 10.6023/cjoc201712005 shu

Asymmetric Synthesis of 3, 5-Disubstituted Prolines

  • Corresponding author: Wang Jiang, hliu@simm.ac.cn Liu Hong, jwang@simm.ac.cn
  • Received Date: 4 December 2017
    Revised Date: 12 February 2018
    Available Online: 28 June 2018

    Fund Project: the Shanghai Science and Technology Development Fund 15QA1404400the Major Project of Chinese National Programs for Fundamental Research and Development 2015CB910304the National Natural Science Foundation of China 21472209Project supported by the National Natural Science Foundation of China (Nos. 81620108027, 21632008, 21672231, 21472209), the Major Project of Chinese National Programs for Fundamental Research and Development (No. 2015CB910304) and the Shanghai Science and Technology Development Fund (No. 15QA1404400)the National Natural Science Foundation of China 21672231the National Natural Science Foundation of China 21632008the National Natural Science Foundation of China 81620108027

Figures(1)

  • Highly diastereoselective Michael addition reactions of chiral Ni(Ⅱ)-complex of glycine with α, β-unsaturated ketones in the presence of 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) and MeOH at ambient temperature were achieved. The operationally convenient procedure for preparation of the target products renders that this method is an attractive strategy for practical synthesis of 3, 5-disubstituted prolines.
  • 加载中
    1. [1]

      (a) Fan, H. ; Peng, J. ; Hamann, M. T. ; Hu, J. F. Chem. Rev. 2008, 108, 264.
      (b) Najera, C. ; Sansano, J. M. Chem. Rev. 2007, 107, 4584.

    2. [2]

      Viso, A.; Fernández de la Pradilla, R.; García, A.; Flores, A. Chem. Rev. 2005, 105, 3167.  doi: 10.1021/cr0406561

    3. [3]

      O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.  doi: 10.1039/a707613d

    4. [4]

      (a) Komatsubara, M. ; Umeki, T. ; Fukuda, T. ; Iwao, M. J. Org. Chem. 2014, 79, 529.
      (b) Gupton, J. T. ; Krumpe, K. E. ; Burnham, B. S. ; Dwornik, K. A. ; Petrich, S. A. ; Du, K. X. ; Bruce, M. A. ; Vu, P. ; Vargas, M. ; Keertikar, K. M. ; Hosein, K. N. ; Jones, C. R. ; Sikorski, J. A. Tetrahedron 1998, 54, 5075.

    5. [5]

      Cheng, G. L.; Wang, X. Y.; Bao, H. L.; Cheng, C. J.; Liu, N.; Hu, Y. F. Org. Lett. 2012, 14, 1949.  doi: 10.1021/ol300495m

    6. [6]

      (a) Fache, F. ; Schulz, E. ; Tommasino, M. L. ; Lemaire, M. Chem. Rev. 2000, 100, 2159.
      (b) Whitesell, J. K. Chem. Rev. 1989, 89, 1581.
      (c) Enders, D. ; Thiebes, C. Pure Appl. Chem. 2001, 73, 573.

    7. [7]

      (a) Yu, Y. Y. ; Wang, C. Y. ; He, X. Z. ; Yao, X. T. ; Zu, L. S. Org. Lett. 2014, 16, 3580.
      (b) Barton, D. H. R. ; Kervagoret, J. ; Zard, S. Z. Tetrahedron 1990, 46, 7587.
      (c) Hua, M. Q. ; Wang, L. A. ; Cui, H. F. ; Nie, J. ; Zhang, X. L. ; Ma, J. A. Chem. Commun. 2011, 47, 1632.

    8. [8]

      (a) Wen, S. ; Li, X. ; Yao, W. J. ; Waheed, A. ; Ullah, N. ; Lu, Y. X. Eur. J. Org. Chem. 2016, 25, 4298.
      (b) Imbri, D. ; Netz, N. ; Kucukdisli, M. ; Kammer, L. M. ; Jung, P. ; Kretzschmann, A. ; Opatz, T. J. Org. Chem. 2014, 79, 11750.
      (c) Bai, X. F. ; Li, L. ; Xu, Z. ; Zheng, Z. J. ; Xia, C. G. ; Cui, Y. M. ; Xu, L. W. Chem. -Eur. J. 2016, 22, 10399.
      (d) Riano, I. ; Diaz, E. ; Uria, U. ; Reyes, E. ; Carrillo, L. ; Vicario, J. L. Chem. Commun. 2016, 52, 2330.

    9. [9]

      (a) Deng, G. ; Wang, J. ; Zhou, Y. ; Jiang, H. ; Liu, H. J. Org. Chem. 2007, 72, 8932.
      (b) Ding, X. ; Wang, H. ; Wang, J. ; Wang, S. ; Lin, D. ; Lv, L. ; Zhou, Y. ; Luo, X. ; Jiang, H. ; Acena, J. L. ; Soloshonok, V. A. ; Liu, H. Amino Acids 2013, 44, 791.
      (c) Ding, X. ; Ye, D. ; Liu, F. ; Deng, G. ; Liu, G. ; Luo, X. ; Jiang, H. ; Liu, H. J. Org. Chem. 2009, 74, 5656.
      (d) Li, T. T. ; Zhou, S. B. ; Wang, J. ; Acena, J. L. ; Soloshonok, V. A. ; Liu, H. J. Org. Chem. 2015, 80, 11275.
      (e) Li, T. T. ; Zhou, S. B. ; Wang, J. ; Acena, J. L. ; Soloshonok, V. A. ; Liu, H. Chem. Commun. 2015, 51, 1624.
      (f) Lin, D. ; Deng, G. ; Wang, J. ; Ding, X. ; Jiang, H. ; Liu, H. J. Org. Chem. 2010, 75, 1717.
      (g) Lin, D. ; Lv, L. ; Wang, J. ; Ding, X. ; Jiang, H. ; Liu, H. J. Org. Chem. 2011, 76, 6649.
      (h) Nian, Y. ; Wang, J. ; Zhou, S. ; Wang, S. ; Moriwaki, H. ; Kawashima, A. ; Soloshonok, V. A. ; Liu, H. Angew. Chem., Int. Ed. 2015, 54, 12918.
      (i) Wang, J. ; Lin, D. Z. ; Shi, J. M. ; Ding, X. ; Zhang, L. ; Jiang, H. L. ; Liu, H. Synthesis 2010, 1205.
      (j) Wang, J. ; Liu, H. ; Acena, J. L. ; Houck, D. ; Takeda, R. ; Moriwaki, H. ; Sato, T. ; Soloshonok, V. A. Org. Biomol. Chem. 2013, 11, 4508.
      (k) Wang, J. ; Shi, T. ; Deng, G. ; Jiang, H. ; Liu, H. J. Org. Chem. 2008, 73, 8563.
      (l) Wang, J. ; Zhang, L. ; Jiang, H. ; Chen, K. ; Liu, H. Chimia 2011, 65, 919.
      (m) Zhou, S. ; Wang, J. ; Chen, X. ; Acena, J. L. ; Soloshonok, V. A. ; Liu, H. Angew. Chem., Int. Ed. 2014, 53, 7883.
      (n) Deng, G. H. ; Ye, D. J. ; Li, Y. Y. ; He, L. Y. ; Zhou, Y. ; Wang, J. ; Li, J. ; Jiang, H. L. ; Liu, H. Tetrahedron 2008, 64, 10512.
      (o) Lin, D. ; Lv, L. ; Wang, J. ; Ding, X. ; Jiang, H. L. ; Liu, H. Chin. J. Chem. 2011, 76, 6649.
      (p) Chen, H. ; Wang, J. ; Zhou, S. ; Liu, H. Chin. J. Chem. 2014, 79, 7872.

    10. [10]

      (a) Belokon, Y. N. ; Bulychev, A. G. ; Vitt, S. V. ; Struchkov, Y. T. ; Batsanov, A. S. ; Timofeeva, T. V. ; Tsyryapkin, V. A. ; Ryzhov, M. G. ; Lysova, L. A. ; Bakhmutov, V. I. ; Belikov, V. M. J. Am. Chem. Soc. 1985, 107, 4252.
      (b) Belokon, Y. N. ; Sagyan, A. S. ; Djamgaryan, S. A. ; Bakhmutov, V. I. ; Vitt, S. V. ; Batsanov, A. S. ; Struchkov, Y. T. ; Belikov, V. M. J. Chem. Soc., Perkin Trans. 11990, 2301.
      (c) Belokon, Y. N. ; Sagyan, A. S. ; Djamgaryan, S. M. ; Bakhmutov, V. I. ; Belikov, V. M. Tetrahedron 1988, 44, 5507.
      (d) Soloshonok, V. A. ; Kukhar, V. P. Tetrahedron 1996, 52, 6953.
      (e) Soloshonok, V. A. ; Kukhar, V. P. ; Galushko, S. V. ; Svistunova, N. Y. ; Avilov, D. V. ; Kuzmina, N. A. ; Raevski, N. I. ; Struchkov, Y. T. ; Pysarevsky, A. P. ; Belokon, Y. N. J. Chem. Soc., Perkin Trans. 11993, 3143.

    11. [11]

      (a) Belokon, Y. N. ; Bulychev, A. G. ; Pavlov, V. A. ; Fedorova, E. B. ; Tsyryapkin, V. A. ; Bakhmutov, V. A. ; Belikov, V. M. J. Chem. Soc., Perkin Trans 1 1988, 8, 2075.
      (b) Soloshonok, V. A. ; Cai, C. ; Hruby, V. J. Angew. Chem., Int. Ed. 2000, 39, 2172.
      (c) Soloshonok, V. A. ; Cai, C. Z. ; Hruby, V. J. Tetrahedron Lett. 2000, 41, 9645.
      (d) Cai, C. Z. ; Soloshonok, V. A. ; Hruby, V. J. J. Org. Chem. 2001, 66, 1339.
      (e) Magdesieva, T. V. ; Levitskiy, O. A. ; Grishin, Y. K. ; Ambartsumyan, A. A. ; Kiskin, M. A. ; Churakov, A. V. ; Babievsky, K. K. ; Kochetkov, K. A. Organometallics 2014, 33, 4629.

    12. [12]

      (a) Belokon, Y. N. ; Popkov, A. N. ; Chernoglazova, N. I. ; Saporovskaya, M. B. ; Bakhmutov, V. I. ; Belikov, V. M. J. Chem. Soc., Chem. Commun. 1988, 19, 1336.
      (b) Soloshonok, V. A. ; Tang, X. J. ; Hruby, V. J. ; Van Meervelt, L. Org. Lett. 2001, 3, 341.
      (c) Taylor, S. M. ; Yamada, T. ; Ueki, H. ; Soloshonok, V. A. Tetrahedron Lett. 2004, 45, 9159.
      (d) Gu, X. Y. ; Tang, X. J. ; Cowell, S. ; Ying, J. F. ; Hruby, V. J. Tetrahedron Lett. 2002, 43, 6669.

    13. [13]

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    15. [15]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    16. [16]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(14)
  • Abstract views(1169)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return