Citation: Li Jin, Chen Jingzhi, Huang Wenhao, Cheng Xu. E-Z Isomerization of 1, 5-Bromotrichloromethylation Reaction Products and Trisubstituted Styrenes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1507-1515. doi: 10.6023/cjoc201712002 shu

E-Z Isomerization of 1, 5-Bromotrichloromethylation Reaction Products and Trisubstituted Styrenes

  • Corresponding author: Cheng Xu, chengxu@nju.edu.cn
  • Received Date: 2 December 2017
    Revised Date: 30 January 2018
    Available Online: 6 June 2018

    Fund Project: the National Natural Science Foundation of China 21572099the National Natural Science Foundation of China 21332005Project supported by the National Natural Science Foundation of China (Nos. 21572099, 21332005)

Figures(3)

  • 1, 5-Bromotrichloromethylation of α-cyclopropylstyrenes via a radical chain pathway was achieved with Ir[dF(CF3)ppy]2(dtbbpy)PF6 as a photoinitiator under visible-light irradiation to give trisubstituted styrenes with Z/E ratio of 30:70. When the reaction mixture was further irradiated, the Z/E ratio could be reversed and increased to 99:1, probably via an energy-transfer pathway involving the Ir photocatalyst. This visible-light-induced catalytic isomerization protocol could also be applied to trisubstituted styrenes to obtain products with Z/E ratios up to 99:1.
  • 加载中
    1. [1]

      (a) Yale, H. L. J. Med. Chem. 1959, 1, 121.
      (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (c) Tomashenko, O. A. ; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
      (d) Mullard, A. Nat. Rev. Drug. Discovery 2013, 12, 87.

    2. [2]

      (a) Ma, J. -A. ; Cahard, D. Chem. Rev. 2008, 108, PR1.
      (b) Chen, P. ; Liu, G. Synthesis 2013, 45, 2919.
      (c) Liu, H. ; Gu, Z. ; Jiang, X. Adv. Synth. Catal. 2013, 355, 617.
      (d) Chu, L. ; Qing, F. -L. Acc. Chem. Res. 2014, 47, 15132.
      (e) Zhang, C. Org. Biomol. Chem. 2014, 12, 6580.
      (f) Alonso, C. ; Martínez de Marigorta, E. ; Rubiales, G. ; Palacios, F. Chem. Rev. 2015, 115, 1847.
      (g) Liu, X. ; Xu, C. ; Wang, M. ; Liu, Q. Chem. Rev. 2015, 115, 683.

    3. [3]

      (a) Hofheinz, W. ; Oberhänsli, W. E. Helv. Chim. Acta 1977, 60, 660.
      (b) Unson, M. D. ; Rose, C. B. ; Faulkner, D. J. ; Brinen, L. S. ; Steiner, J. R. ; Clardy, J. J. Org. Chem. 1993, 58, 6336.
      (c) Orjala, J. ; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
      (d) Fu, X. ; Zeng, L. -M. ; Su, J. -Y. ; Pais, M. J. Nat. Prod. 1997, 60, 695.
      (e) MacMillan, J. B. ; Trousdale, E. K. ; Molinski, T. F. Org. Lett. 2000, 2, 2721.
      (f) Orsini, M. A. ; Pannell, L. K. ; Erickson, K. L. J. Nat. Prod. 2001, 64, 572.

    4. [4]

      (a) Hutt, M. P. ; Elslager, E. F. ; Werbel, L. M. J. Heterocycl. Chem. 1970, 7, 511.
      (b) Werbel, L. M. ; Elslager, E. F. ; Hess, C. ; Hutt, M. P. J. Med. Chem. 1987, 30, 1943.
      (c) Fujisawa, T. ; Ito, T. ; Fujimoto, K. ; Shimizu, M. ; Wynberg, H. ; Staring, E. G. J. Tetrahedron Lett. 1997, 38, 1593.
      (d) Huffman, M. A. ; Reider, P. J. Tetrahedron Lett. 1999, 40, 831.
      (e) Bringmann, G. ; Feineis, D. ; God, R. ; Peters, K. ; Peters, E. -M. ; Scholz, J. ; Riederer, F. ; Moser, A. Biorg. Med. Chem. 2002, 10, 2207.

    5. [5]

      Wallentin, C. -J. ; Nguyen, J. D. ; Finkbeiner, P. ; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
      (b) Arceo, E. ; Montroni, E. ; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 12064.
      (c) Liu, Y. ; Zhang, J. -L. ; Song, R. -J. ; Li, J. -H. Eur. J. Org. Chem. 2014, 6, 1177.
      (d) Franz, J. F. ; Kraus, W. B. ; Zeitler, K. Chem. Commun. 2015, 51, 8280.

    6. [6]

      Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am.Chem.Soc. 2015, 137, 9551.  doi: 10.1021/jacs.5b06010

    7. [7]

      Li, X.; Wu, J.; Chen, L.; Zhong, X.; He, C.; Zhang, R.; Duan, C. Chem.Commun. 2016, 52, 9628.  doi: 10.1039/C6CC04647A
       

    8. [8]

      Li, J.; Chen, J.; Jiao, W.; Wang, G.; Li, Y.; Cheng, X.; Li, G. J.Org.Chem. 2016, 81, 9992.  doi: 10.1021/acs.joc.6b01825

    9. [9]

      For some examples of radical annulation of α-cyclopropylstyrene:
      (a) Zhang, F. ; Min, Q. -Q. ; Zhang, X. Synthesis 2015, 47, 2912.
      (b) Prieto, A. ; Melot, R. ; Bouyssi, D. ; Monteiro, N. ACS Catal. 2016, 6, 1093.
      (c) Prieto, A. ; Melot, R. ; Bouyssi, D. ; Monteiro, N. Angew. Chem., Int. Ed. 2016, 55, 1885.

    10. [10]

      (a) Feng, Z. ; Xiao, Y. -L. ; Zhang, X. Org. Chem. Front. 2016, 3, 466.
      (b) Ke, M. ; Song, Q. Adv. Synth. Catal. 2017, 359, 384.
      (c) Nie, X. ; Cheng, C. ; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.

    11. [11]

      (a) Kimura, T. ; Fujita, M. ; Sohmiya, H. ; Ando, T. J. Org. Chem. 1998, 63, 6719.
      (b) Freeman, D. B. ; Furst, L. ; Condie, A. G. ; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.

    12. [12]

      Cismesia, M. A.; Yoon, T. P. Chem.Sci. 2015, 6, 5426.  doi: 10.1039/C5SC02185E
       

    13. [13]

      (a) Hammond, G. S. ; Saltiel, J. J. Am. Chem. Soc. 1962, 84, 4983.
      (b) Saltiel, J. ; Hammond, G. S. J. Am. Chem. Soc. 1963, 85, 2515.
      (c) Hammond, G. S. ; Saltiel, J. ; Lamola, A. A. ; Turro, N. J. ; Bradshaw, J. S. ; Cowan, D. O. ; Counsell, R. C. ; Vogt, V. ; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.
      (d) Tatsuo, A. ; Hirochika, S. ; Katsumi, T. Chem. Lett. 1980, 9, 261.
      (e) Arai, T. ; Sakuragi, H. ; Tokumaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2204.
      (f) Sakaki, S. ; Okitaka, I. ; Ohkubo, K. Inorg. Chem. 1984, 23, 198.
      (g) Osawa, M. ; Hoshino, M. ; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 3472.

    14. [14]

      (a) Singh, K. ; Staig, S. J. ; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275.
      (b) Singh, A. ; Fennell, C. J. ; Weaver, J. D. Chem. Sci. 2016, 7, 6796.

    15. [15]

      (a) Fabry, D. C. ; Ronge, M. A. ; Rueping, M. Chem. -Eur. J. 2015, 21, 5350.
      For selected examples involving energy transfer, see: (b) Chen, Y. ; Kamlet, A. S. ; Steinman, J. B. ; Liu, D. R. Nat. Chem. 2011, 3, 146.
      (c) Lu, Z. ; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329.
      (d) Zou, Y. -Q. ; Duan, S. -W. ; Meng, X. -G. ; Hu, X. -Q. ; Gao, S. ; Chen, J. -R. ; Xiao, W. -J. Tetrahedron 2012, 68, 6914.
      (e) Alonso, R. ; Bach, T. Angew. Chem., Int. Ed. 2014, 53, 4368.
      (f) Farney, E. P. ; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 793.
      (g) Kumarasamy, E. ; Raghunathan, R. ; Jockusch, S. ; Ugrinov, A. ; Sivaguru, J. J. Am. Chem. Soc. 2014, 136, 8729.

    16. [16]

      Metternich, J. B.; Gilmour, R. J.Am.Chem.Soc. 2015, 137, 11254.  doi: 10.1021/jacs.5b07136
       

    17. [17]

      Alexander, J.; Renyer, M. L.; Veerapanane, H. Synth.Commun. 1995, 25, 3875.  doi: 10.1080/00397919508011463

    18. [18]

      Jiang, G.-J.; Fu, X-F.; Li, Q.; Yu, Z.-X. Org.Lett. 2012, 14, 692.  doi: 10.1021/ol2031526

    19. [19]

      Li, J.-Q.; Liu, J.-G.; Krajangsri, S.; Chumnanvej, N.; Singh, T.; Andersson, P. G. ACS Catal. 2016, 6, 8342.  doi: 10.1021/acscatal.6b02456

    20. [20]

      Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 45041.
       

    21. [21]

      Miller, D. J.; Yu, F.; Young, N. J.; Allemann, R. K. Org.Biomol. Chem. 2007, 5, 3287.  doi: 10.1039/b713301b
       

    22. [22]

      Ren, K.; Hu, B.; Zhao, M.-M.; Tu, Y.-H.; Xie, X.-M.; Zhang, Z.-G. J. Org.Chem. 2014, 79, 2170.  doi: 10.1021/jo500042h
       

    23. [23]

      Skapos, H.; Osipov, S. N.; Vorob'eva, D. V.; Odinets, I. L.; Lork, E.; Roeschenthaler, G. Org.Biomol.Chem. 2007, 5, 2361.  doi: 10.1039/B705510B
       

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    5. [5]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    8. [8]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    9. [9]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    10. [10]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    11. [11]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    12. [12]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    15. [15]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    16. [16]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    17. [17]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    18. [18]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    19. [19]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    20. [20]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

Metrics
  • PDF Downloads(21)
  • Abstract views(1252)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return