Citation: Wang Shaofan, Zhao Qipeng, Wang Guodong, Wang Kai, Xia Chengcai. Palladium-Catalyzed Direct o-Nitrification of Azobenzenes with Co(NO3)2·6H2O via C-H Activation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1849-1854. doi: 10.6023/cjoc201711041 shu

Palladium-Catalyzed Direct o-Nitrification of Azobenzenes with Co(NO3)2·6H2O via C-H Activation

  • Corresponding author: Xia Chengcai, xiachc@163.com
  • Received Date: 22 November 2017
    Revised Date: 28 January 2018
    Available Online: 8 July 2018

    Fund Project: the Projects of Medical and Health Technology Development Program in Shandong Province 2015WS0102Project supported by the Projects of Medical and Health Technology Development Program in Shandong Province (No. 2015WS0102)

Figures(2)

  • An efficient protocol for conversion of azobenzenes into their ortho-nitro derivatives via palladium-catalyzed C-H bond activation has been developed. Commercially available and less expensive Co(NO3)2·6H2O was used as the nitrification reagent. Various o-nitroazobenzenes were obtained in excellent yields.
  • 加载中
    1. [1]

      (a) Ballini, R. ; Barboni, L. ; Fringuelli, F. ; Palmieri, A. ; Pizzo F. ; Vaccaro, L. Green Chem. 2007, 9, 823.
      (b) Papadopoulou, M. V. ; Trunz, B. B. ; Bloomer, W. D. ; McKenzie, C. ; Wilkinson, S. R. ; Prasittichai, C. ; Brun, R. ; Kaiser, M. ; Torreele, E. J. Med. Chem. 2011, 54, 8214.
      (c) Hou, W. D. ; Wei, Q. ; Liu, G. S. ; Chen, J. ; Guo, J. ; Peng, Y. G. Org. Lett. 2015, 17, 4870.

    2. [2]

      (a) Prakash, G. K. S. ; Panja, C. ; Mathew, T. ; Surampudi, V. ; Petasis, N. A. ; Olah, G. A. Org. Lett. 2004, 6, 2205.
      (b) Manna, S. ; Maity, S. ; Rana, S. ; Agasti, S. ; Maiti, D. Org. Lett. 2012, 14, 1736.

    3. [3]

      Natarajan, P.; Chaudhary, R.; Venugopalan, P. J. Org. Chem. 2015, 80, 10498.  doi: 10.1021/acs.joc.5b02133

    4. [4]

      (a) Fors, B. P. ; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 12898.
      (b) Yan, G. B. ; Yang, M. H. Org. Biomol. Chem. 2013, 11, 2554.

    5. [5]

      (a) Liu, Y. K. ; Lou, S. J. ; Xu, D. Q. ; Xu, Z. Y. Chem. -Eur. J. 2010, 16, 13590.
      (b) Zhang, L. ; Liu, Z. H. ; Li, H. Q. ; Fang, G. C. ; Barry, B. D. ; Belay, T. A. ; Bi, X. H. ; Liu, Q. Org. Lett. 2011, 13, 6536.
      (c) Zhang, W. ; Lou, S. J. ; Liu, Y. K. ; Xu, Z. Y. J. Org. Chem. 2013, 78, 5932.
      (d) Katayev, D. ; Pfister, K. F. ; Wendling, T. ; Gooßen, L. J. Chem. -Eur. J. 2014, 20, 9902.

    6. [6]

      (a) Kilpatrick, B. ; Heller, M. ; Arns, S. Chem. Commun. 2013, 49, 514.
      (b) Majhi, B. ; Kundu, D. ; Ahammed, S. ; Ranu, B. C. Chem. -Eur. J. 2014, 20, 9862.
      (c) Liang, Y. F. ; Li, X. Y. ; Wang, X. Y. ; Yan, Y. P. ; Feng, P. ; Jiao, N. ACS Catal. 2015, 5, 1956.
      (d) Zhang, W. ; Ren, S. B. ; Zhang, J. ; Liu, Y. K. J. Org. Chem. 2015, 80, 5973.

    7. [7]

      Dong, J. W.; Jin, B.; Sun, P. P. Org. Lett. 2014, 16, 4540.  doi: 10.1021/ol502090n

    8. [8]

      Lu, Y.; Li, Y. M.; Zhang, R.; Jin, K.; Duan, C. Y. Tetrahedron 2013, 69, 9422.  doi: 10.1016/j.tet.2013.08.076

    9. [9]

      Sadhu, P.; Alla, S. K.; Punniyamurthy, T. J. Org. Chem. 2015, 80, 8245.  doi: 10.1021/acs.joc.5b01021

    10. [10]

      (a) Banghart, M. R. ; Mourot, A. ; Fortin, D. L. ; Yao, J. Z. ; Kramer, R. H. ; Trauner, D. Angew. Chem., Int. Ed. 2009, 48, 9097.
      (b) Takahashi, H. T. ; Ishioka, T. ; Koiso, Y. ; Sodeoka, M. ; Hashimoto, Y. Biol. Pharm. Bull. 2000, 23, 1387.

    11. [11]

      Roy, D.; Fragiadakis, D.; Roland, C. M.; Dabrowski, R.; Dziaduszek J.; Urban, S. J. Chem. Phys. 2014, 140, 530.

    12. [12]

      (a) Ferri, V. ; Elbing, M. ; Pace, G. ; Dickey, M. D. ; Zharnikov, M. ; Samor, P. ; Mayor, M. ; Rampi, M. A. Angew. Chem., Int. Ed. 2008, 47, 3407.
      (b) Puntoriero, F. ; Ceroni, P. ; Balzani, Vi. ; Bergamini, G. ; Vögtle, F. J. Am. Chem. Soc. 2007, 129, 10714.

    13. [13]

      Chang, C. W.; Lu, Y. C.; Wang, T. T.; Diau, E. W. G. J. Am. Chem. Soc. 2004, 126, 10109.  doi: 10.1021/ja049215p

    14. [14]

      (a) Zarei, A. ; Hajipour, A. R. ; Khazdooz, L. ; Mirjalili, B. F. ; Chermahini, A. N. Dyes Pigm. 2009, 81, 240.
      (b) Bafana, A. ; Devi, S. S. ; Chakrabarti, T. Environ. Rev. 2011, 19, 350.

    15. [15]

      Feringa, B. L.; Delden, R. A. V.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.  doi: 10.1021/cr9900228

    16. [16]

      (a) Jones, P. ; Altamura, S. ; Boueres, J. ; Ferrigno, F. ; Fonsi, M. ; Giomini, C. ; Lamartina, S. ; Monteagudo, E. ; Ontoria, J. M. ; Orsale, M. V. ; Palumbi, M. C. ; Pesci, S. ; Roscilli, G. ; Scarpelli, R. ; Fademrecht, C. S. ; Toniatti, C. ; Rowley, M. J. Med. Chem. 2009, 52, 7170.
      (b) Loddo, R. ; Novelli, F. ; Sparatore, A. ; Tasso, B. ; Tonelli, M. ; Boido, V. ; Sparatore, F. ; Collu, G. ; Delogu, I. ; Giliberti, G. ; Colla, P. L. Bioorg. Med. Chem. 2015, 23, 7024.
      (c) Nykaza, T. V. ; Harrison, T. S. ; Ghosh, A. ; Putnik, R. A. ; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.

    17. [17]

      (a) Bellotto, S. ; Reuter, R. ; Heinis, C. ; Wegner, H. A. J. Org. Chem. 2011, 76, 9826.
      (b) Bandara, H. M. D. ; Friss, T. R. ; Enriquez, M. M. ; Isley, W. ; Incarvito, C. ; Frank, H. A. ; Gascon, J. ; Burdette, S. C. J. Org. Chem. 2010, 75, 4817.

    18. [18]

      Hofmann, K.; Brumm, S.; Mende, C.; Nagel, K.; Seifert, A.; Roth, I.; Schaarschmidt, D.; Lang, H.; Spange, S. New J. Chem. 2012, 36, 1655.  doi: 10.1039/c2nj40313g

    19. [19]

      (a) Cantillo, D. ; Baghbanzadeh, M. ; Kappe, C. O. Angew. Chem., Int. Ed. 2012, 51, 10190.
      (b) Shi, Q. ; Lu, R. ; Jin, K. ; Zhang, Z. ; Zhao, D. Green Chem. 2006, 8, 868.
      (c) Vass, A. ; Dudas, J. ; Toth, J. ; Varma, R. S. Tetrahedron Lett. 2001, 42, 5347.

    20. [20]

      (a) Nguyen, T. B. ; Ermolenko, L. ; Al-Mourabit, A. J. Am. Chem. Soc. 2012, 135, 118.
      (b) Kim, J. ; Kim, J. ; Lee, H. ; Lee, B. M. ; Kim, B. H. Tetrahedron 2011, 67, 8027.

    21. [21]

      (a) Xia, C. C. ; Wei, Z. J. ; Yang, Y. ; Yu, W. B. ; Liao, H. X. ; Shen, C. ; Zhang, P. F. Chem. -Asian J. 2016, 11, 360.
      (b) Shen, H. Y. ; Shen, C. ; Wang, A. M. ; Zhang, P. F. Catal. Sci. Technol. 2015, 5, 2065.
      (c) Xia, C. C. ; Wei, Z. J. ; Shen, C. ; Xu, J. ; Yang, Y. ; Su, W. K. ; Zhang, P. F. RSC Adv. 2015, 5, 52588.
      (d) Xia, C. C. ; Wang, K. ; Xu, J. ; Wei, Z. J. ; Shen, C. ; Duan, G. Y. ; Zhu, Q. ; Zhang, P. F. RSC Adv. 2016, 6, 37173.
      (e) Xia, C. C. ; Wang, K. ; Xu, J. ; Shen, C. ; Sun, D. ; Li, H. S. ; Wang, G. D. ; Zhang, P. F. Org. Biomol. Chem. 2017, 15, 531.
      (f) Fu, X. P. ; Wei, Z. J. ; Xia, C. C. ; Shen, C. ; Xu, J. ; Yang, Y. ; Wang, K. ; Zhang, P. F. Catal. Lett. 2017, 147, 400.

    22. [22]

      Rosevear, J.; Wilshire, J. F. K. Aust. J. Chem. 1987, 40, 1663.  doi: 10.1071/CH9871663

  • 加载中
    1. [1]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    2. [2]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    3. [3]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    8. [8]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    9. [9]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    17. [17]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    18. [18]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    19. [19]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    20. [20]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

Metrics
  • PDF Downloads(7)
  • Abstract views(991)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return