Citation: Lin Yamei, Yi Wenbin. A Route to Alkynyl Sulfides and Asymmetric Disulfides from Sodium Arylsulfiniate[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1207-1213. doi: 10.6023/cjoc201711036 shu

A Route to Alkynyl Sulfides and Asymmetric Disulfides from Sodium Arylsulfiniate

  • Corresponding author: Yi Wenbin, yiwb@njust.edu.cn
  • Received Date: 21 November 2017
    Revised Date: 17 December 2017
    Available Online: 10 May 2018

    Fund Project: the Fundamental Research Funds for the Central Universities 30916011102the National Natural Science Foundation of China 21776138Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), the Fundamental Research Funds for the Central Universities (No. 30916011102) and the Qing Lan and Six Talent Peaks in Jiangsu Provincethe National Natural Science Foundation of China 21476116

Figures(1)

  • A new approach for the synthesis of alkynyl sulfides and asymmetric disulfides with odorless, easy-to-handle sodium arylsulfiniates as the sulfur source in I2/PPh3 aqueous system has been developed. Compared with reported approaches, this protocol provides several merits including simple procedures, free of transition-metal catalysts and organic solvent, and high yields.
  • 加载中
    1. [1]

      (a) Guillerm, G. ; Guillerm, D. ; Vandenplas-Witkowki, C. ; Rogniaux, H. ; Carte, N. ; Leize, E. ; Van Dorsselaer, A. ; De Clercq, E. ; Lambert, C. J. Med. Chem. 2001, 44, 2743.
      (b) Cruz-Monteagudo, M. ; PhamThe, H. ; Cordeiro, M. N. ; Borges, F. Mol. Inf. 2010, 29, 303.
      (c) Kumar, R. ; Srivastava, R. ; Singh, R. K. ; Surolia, A. ; Rao, D. N. Bioorg. Med. Chem. 2008, 16, 2276.

    2. [2]

      (a) Feng, M. ; Jiang, X. Chem. Commun. 2014, 50, 9690.
      (b) Nicolaou, K. C. ; Hughes, R. ; Pfefferkorn, J. A. ; Barluenga, S. ; Roecker, A. J. Chem. -Eur. J. 2001, 7, 4280.
      (c) Conway, T. T. ; DeMaster, E. G. ; Goon, D. J. W. ; Shirota, F. N. ; Nagasawa, H. T. J. Med. Chem. 1999, 42, 4016.
      (d) Nicolaou, K. C. ; Lu, M. ; Totokotsopoulos, S. ; Heretsch, P. ; Giguère, D. ; Sun, Y. -P. ; Sarlah, D. ; Nguyen, T. H. ; Wolf, I. C. ; Smee, D. F. ; Day, C. W. ; Bopp, S. ; Winzeler, E. A. J. Am. Chem. Soc. 2012, 134, 17320.
      (e) Chankhamjon, P. ; Boettger-Schmidt, D. ; Scherlach, K. ; Urbansky, B. ; Lackner, G. ; Kalb, D. ; Dahse, H. -M. ; Hoffmeister, D. ; Hertweck, C. Angew. Chem., Int. Ed. 2014, 53, 13409.
      (f) Mohammadi, M. K. ; Ghammamy, S. ; Zarrinabadi, S. ; Farjam, M. H. ; Sabayan, B. Chin. J. Chem. 2010, 28, 2199.

    3. [3]

      (a) Bouillon, J. -P. ; Musyanovich, R. ; Portella, C. ; Shermolovich, Y. Eur. J. Org. Chem. 2001, 3625.
      (b) Hilt, G. ; Luers, S. ; Harms, K. J. Org. Chem. 2004, 69, 624.
      (c) Ding, S. ; Jia, G. ; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877.
      (d) Savarin, C. ; Srogl, J. ; Liebeskind, L. S. Org. Lett. 2001, 3, 91.
      (e) Wang, G. ; Guo, Y. ; Lü, Y. ; Wang, X. C. ; Quan, Z. J. Chin. J. Org. Chem. 2016, 36, 1375(in Chinese).
      (王刚, 郭燕, 吕颖, 王喜存, 权正军, 有机化学, 2016, 36, 1375. )
      (f) An, Y. N. ; Li, J. X. ; Li, M. ; Li, C. S. ; Yang, S. R. Chin. J. Org. Chem. 2017, 37, 720(in Chinese).
      (安艳妮, 李建晓, 李蒙, 李春生, 杨少容, 有机化学, 2017, 37, 720. )
      (g) Saba, S. ; Rafique, J. ; Braga, A. L. Catal. Sci. Technol. 2016, 6, 3087.
      (h) Vieira, A. A. ; Azeredo, J. B. ; Godoi, M. ; Santi, C. ; da Silva Júnior, E. N. ; Braga, A. L. J. Org. Chem. 2015, 80, 2120.

    4. [4]

      (a) Yang, J. ; Cohen Stuart, M. A. ; Kamperman, M. Chem. Soc. Rev. 2014, 43, 8271.
      (b) Wommack, A. J. ; Ziarek, J. J. ; Tomaras, J. ; Chileveru, H. R. ; Zhang, Y. ; Wagner, G. ; Nolan, E. M. J. Am. Chem. Soc. 2014, 136, 13494.
      (c) Ge, W. W. ; Chen, J. ; Zhang, Y. ; Zong, L. ; Zhang, M. ; Dong, J. J. Chin. J. Org. Chem. 2017, 37, 2409(in Chinese).
      (葛巍巍, 陈静, 张也, 宗良, 张鸣, 董俊军, 有机化学, 2017, 37, 2409. )

    5. [5]

      (a) Rowan, S. J. ; Cantrill, S. J. ; Cousins, G. R. L. ; Sanders, J. K. M. ; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898.
      (b) Otto, S. ; Furlan, R. L. E. ; Sanders, J. K. M. Science 2002, 297, 590.

    6. [6]

      (a) Doroszuk, J. ; Musiejuk, M. ; Demkowicz, S. ; Rachon, J. ; Witt, D. RSC Adv. 2016, 6, 105449.
      (b) Takeda, H. ; Shimada, S. ; Ohnishi, S. ; Nakanishi, F. ; Matsuda, H. Tetrahedron Lett. 1998, 39, 3701.

    7. [7]

      (a) Fang, Z. ; He, W. ; Cai, M. ; Lin, Y. ; Zhao, H. Tetrahedron Lett. 2015, 56, 6463.
      (b) Arisawa, M. ; Fujimoto, K. ; Morinaka, S. ; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 12226.
      (c) Braga, A. L. ; Silviera, C. C. ; Reckziegel, A. ; Menezes, P. H. Tetrahedron Lett. 1993, 34, 8041.
      (d) Bieber, L. W. ; da Silva, M. F. ; Menezes, P. H. Tetrahedron Lett. 2004, 45, 2735.

    8. [8]

      Frei, R.; Wodrich, M. D.; Hari, D. P.; Borin, P.-A.; Chauvier, C.; Waser, J. J. Am. Chem. Soc. 2014, 136, 16563.  doi: 10.1021/ja5083014

    9. [9]

      (a) Ziegler, G. R. ; Welch, C. A. ; Orzech, C. E. ; Kikkawa, S. ; Miller, S. I. J. Am. Chem. Soc. 1963, 85, 1648.
      (b) Marchueta, I. ; Montenegro, E. ; Panov, D. ; Poch, M. ; Verdaguer, X. ; Moyano, A. ; Pericas, M. A. ; Riera, A. J. Org. Chem. 2001, 66, 6400.
      (c) Ni, Z. ; Wang, S. ; Mao, H. ; Pan, Y. Tetrahedron Lett. 2012, 53, 3907.
      (d) Ochiai, M. ; Nagaoka, T. ; Sueda, T. ; Yan, J. ; Chen, D. W. ; Miyamoto, K. Org. Biomol. Chem. 2003, 1, 1517.

    10. [10]

      (a) Taniguchi, N. Tetrahedron 2017, 73, 2030.
      (b) Field, L. ; Buckman, J. D. J. Org. Chem. 1968, 33, 3865.
      (c) Brzezinska, E. ; Ternay, A. L. J. Org. Chem. 1994, 59, 8239.
      (d) Zhao, R. Y. ; Erickson, H. K. ; Leece, B. A. ; Reid, E. E. ; Goldmacher, V. S. ; Lambert, J. M. ; Chari, R. V. J. J. Med. Chem. 2012, 55, 766.
      (e) Sivaramakrishnan, S. ; Keerthi, K. ; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 10830.

    11. [11]

      Vandavasi, J. K.; Hu, W.-P.; Chen, C.-Y.; Wang, J.-J. Tetrahedron 2011, 67, 8895.  doi: 10.1016/j.tet.2011.09.071

    12. [12]

      Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2003, 125, 6624.  doi: 10.1021/ja035221u

    13. [13]

      Xiao, X.; Feng, M.; Jiang, X. Chem. Commun. 2015, 51, 4208.  doi: 10.1039/C4CC09633A

    14. [14]

      (a) Xiao, X. ; Feng, M. ; Jiang, X. Angew. Chem., Int. Ed. 2016, 55, 14121.
      (b) Dai, Z. ; Xiao, X. ; Jiang, X. Tetrahedron 2017, 73, 3702.

    15. [15]

      (a) Lin, Y. -M. ; Lu, G. -P. ; Cai, C. ; Yi, W. -B. Org. Lett. 2015, 17, 3310.
      (b) Lin, Y. -M. ; Lu, G. -P. ; Wang, G. -X. ; Yi, W. -B. Adv. Synth. Catal. 2016, 358, 4100.
      (c) Lin, Y. -M. ; Lu, G. -P. ; Wang, G. -X. ; Yi, W. -B. J. Org. Chem. 2017, 82, 382.
      (d) Xu, Z. -B. ; Lu, G. -P. ; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.

    16. [16]

      Ni, Z.; Wang, S.; Mao, H.; Pan, Y. Tetrahedron Lett. 2012, 53, 3907.  doi: 10.1016/j.tetlet.2012.05.072

    17. [17]

      Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M. Green Chem. 2013, 15, 3170.  doi: 10.1039/c3gc41330f

    18. [18]

      Liu, F.; Yi, W. Org. Chem. Front. 2018, 5, 428.  doi: 10.1039/C7QO00724H

    19. [19]

      Peña, J.; Talavera, G.; Waldecker, B.; Alcarazo, M. Chem.-Eur. J. 2017, 23, 75.  doi: 10.1002/chem.201604760

    20. [20]

      Han, M.; Lee, J. T.; Hahn, H.-G. Tetrahedron Lett. 2011, 52, 236.  doi: 10.1016/j.tetlet.2010.11.042

    21. [21]

      Bao, M.; Shimizu, M. Tetrahedron 2003, 59, 9655.  doi: 10.1016/j.tet.2003.09.080

    22. [22]

      Demkowicz, S.; Rachon, J.; Witt, D. Synthesis 2008, 350, 2033.

    23. [23]

      Turos, E.; Revell, K. D.; Ramaraju, P.; Gergeres, D. A.; Greenhalgh, K.; Young, A.; Sathyanarayan, N.; Dickey, S.; Lim, D.; Alhamadsheh, M. M.; Reynolds, K. Bioorg. Med. Chem. 2008, 16, 6501.  doi: 10.1016/j.bmc.2008.05.032

    24. [24]

      Hunter, R.; Caira, M.; Stellenboom, N. J. Org. Chem. 2006, 71, 8268.  doi: 10.1021/jo060693n

    25. [25]

      Tsutsumi, N.; Itoh, T.; Ohsawa, A. Chem. Pharm. Bull. 2000, 48, 1524.  doi: 10.1248/cpb.48.1524

    26. [26]

      Benati, L.; Montevecchi, P. C.; Spagnolo, P. Tetrahedron Lett. 1986, 27, 1739.  doi: 10.1016/S0040-4039(00)84361-0

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(8)
  • Abstract views(1482)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return