Citation: Zong Chaoyang, Gu Huiwen, Zhang Lijie, Jin Yudong, Sun Yaquan. Microwave-Accelerated Dimroth Rearrangement for the Synthesis of Pyrido [2, 3-d]pyrimidin-4-amine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1165-1171. doi: 10.6023/cjoc201711028 shu

Microwave-Accelerated Dimroth Rearrangement for the Synthesis of Pyrido [2, 3-d]pyrimidin-4-amine Derivatives

  • Corresponding author: Sun Yaquan, sunyaquan@hotmail.com
  • Received Date: 19 November 2017
    Revised Date: 3 January 2018
    Available Online: 10 May 2018

    Fund Project: the Jiangsu Prospective Joint Research Project BY2016066-02Project supported by the Jiangsu Prospective Joint Research Project (No. BY2016066-02) and the College Students Innovation Project (No. 201410324014Z)the College Students Innovation Project 201410324014Z

Figures(3)

  • In this paper, a novel synthetic method for N-(3, 5-dichlorophenyl)pyrido [2, 3-d]pyrimidin-4-amine was reported, which began from 2-aminonicotinonitrile, following condensation, cyclization and then Dimroth rearrangement reaction under microwave irradiation conditions. The over yield was 90%. Employing the same synthetic method, 20 pyrido [2, 3-d]pyrimidin- 4-amine derivatives were synthesized. We also compared microwave irradiation and oil bath heating for synthetizing the target products. The results showed that the method under microwave irradiation for the preparation of pyrido [2, 3-d]pyrimidin- 4-amine was time-saving and high yield. It is expected to become an efficient, gentle and environmentally friendly synthetic method of pyrido [2, 3-d]pyrimidin-4-amine.
  • 加载中
    1. [1]

      Li, M.; Liu, R.; Tian, Y; Chang, Y.; Xiao, Y. Chin. J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.v35.9

    2. [2]

      Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808(in Chinese).
       

    3. [3]

      Lin, W.; Hu, X.; Wang, Y.; Song, S.; Zhang, M.; Shi, D. Chin. J. Org. Chem. 2018, 38, 855(in Chinese).

    4. [4]

      Zhang, B.; Yang, L.; Shi, R.; Kang, Y. Chin. J. Org. Chem. 2016, 36, 352(in Chinese).
       

    5. [5]

      Insuasty, D.; Abonia, R.; Insuasty, B.; Quiroga, J.; Laali, K. K.; Nogueras, M.; Cobo, J. ACS Comb. Sci. 2017, 19, 555.  doi: 10.1021/acscombsci.7b00091

    6. [6]

      Mamaghani, M.; Hossein Nia, R. J. Heterocycl. Chem. 2017, 54, 1700.  doi: 10.1002/jhet.v54.3

    7. [7]

      Satham, L.; Namboothiri, I. N. N. J. Org. Chem. 2017, 82, 6482.  doi: 10.1021/acs.joc.7b00947

    8. [8]

      Hou, J.; Wan, S. H.; Wang, G. F.; Zhang, T. T.; Li, Z. H.; Tian, Y. X.; Yu, Y. H.; Wu, X. Y.; Zhang, J. J. Eur. J. Med. Chem. 2016, 118, 276.  doi: 10.1016/j.ejmech.2016.04.026

    9. [9]

      Saurat, T.; Buron, F.; Rodrigues, N.; Tauzia de, M.; Colliandre, L.; Bourg, S.; Bonnet, P.; Guillaumet, G.; Akssira, M.; Corlu, A.; Guillouzo, C.; Berthier, P.; Rio, P.; Jourdan, M.; Bénédetti, M.; Routier, S. J. Med. Chem. 2014, 57, 613.  doi: 10.1021/jm401138v

    10. [10]

      Zhang, H. J.; Wang, S. B.; Wen, X.; Li, J. Z.; Quan, Z. S. Med. Chem. Res. 2016, 25, 1287.  doi: 10.1007/s00044-016-1559-1

    11. [11]

      Lacbay, C. M.; Mancuso, J.; Lin, Y. S.; Bennett, N; Götte, M.; Tsantrizos, Y. S. J. Med. Chem. 2014, 57, 7435.  doi: 10.1021/jm501010f

    12. [12]

      Betebenner, D. A. ; Degoey, D. A. ; Maring, C. J. ; Chris Krueger, A. ; Iwasaki, N. ; Rockway, T. W. ; Cooper, C. S. ; Anderson, D. D. ; Donner, P. L. ; Green, B. E. ; Kempf, D. J. ; Liu, D. ; McDaniel, K. F. ; Madigan, D. ; Motter, C. E. ; Pratt, J. K. ; Shanley, J. P. ; Tufano, M. D. ; Wagner, R. ; Zhang, R. ; Molla, A. ; Mo, H. ; Pilot-Matias, T. ; Masse Sherie, V. L. ; Carrick, R. J. ; He, W. ; Lu, L. ; Grampovnik, D. J. WO 2007076034, 2007[Chem. Abstr. 2007, 147, 143454].

    13. [13]

      Chris Krueger, A.; Madigan, D. L.; Beno, D. W.; Betebenner, D. A.; Carrick, R.; Green, B. E.; He, W.; Liu, D.; Maring, C. J.; McDaniel, K. F.; Mo, H.; Molla, A.; Motter, C. E.; Pilot-Matias, T. J.; Tufano, M. D.; Kempf, D. J. Bioorg. Med. Chem. Lett. 2012, 22, 2212.

    14. [14]

      Arnold, L. D. ; Moyer, M. P. ; Sobolov-Jaynes, S. B. US 6395733, 2002[Chem. Abstr. 1997, 126, 144288].

    15. [15]

      Watanabe, K. A. ; Tsann-Long, S. U. ; Huang, J. T. WO 9000172, 1990[Chem. Abstr. 1990, 113, 40343].

    16. [16]

      Ravi Kanth, S.; Venkat Reddy, G.; Hara Kishore, K.; Shanthan Rao, P.; Narsaiah, B.; Surya Narayana Murthy, U. Eur. J. Med. Chem. 2006, 41, 1011.  doi: 10.1016/j.ejmech.2006.03.028

    17. [17]

      Naresh Kumar, R.; Jitender Dev, G.; Ravikuma, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Bioorg. Med. Chem. Lett. 2016, 26, 2927.  doi: 10.1016/j.bmcl.2016.04.038

    18. [18]

      Aly, H. M.; Saleh, N. M. Int. J. Adv. Res. 2014, 2, 694.

    19. [19]

      Song, Z.; Jin, Y.; Ge, Y.; Wang, C.; Zhang, J.; Tang, Z.; Peng, J.; Liu, K.; Li, Y.; Ma, X. Bioorg. Med. Chem. 2016, 24, 5505.  doi: 10.1016/j.bmc.2016.09.001

    20. [20]

      Stuart, G. S. ; Guntrip, S. B. ; Mckeown, S. C. ; Page, M. J. ; Smith, K. J. ; Vile, S. ; Hudson, A. T. ; Barraclough, P. ; Franzmann, K. W. US 6169091, 2001[Chem. Abstr. 1997, 126, 330623].

    21. [21]

      Zheng, G. Z.; Mao, Y.; Lee, C. H.; Pratt, J. K.; Koenig, J. R.; Perner, R. J.; Cowart, M. D.; Gfesser, G. A.; McGaraughty, S.; Chu, K. L.; Zhu, C.; Yu, H.; Kohlhaas, K.; Alexander, K. M.; Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk, E. A.; Stewart, A. O. Bioorg. Med. Chem. Lett. 2003, 13, 3041.  doi: 10.1016/S0960-894X(03)00642-5

    22. [22]

      Bhagwat, S. S. ; Lee, C. H. ; Richard, R. J. ; Gu, Y. G. WO 0157040, 2001[Chem. Abstr. 2001, 135, 152822].

    23. [23]

      Al-Ashmawy A. A. K.; Ragab, F. A.; Elokely, K. M.; Anwar, M. M.; Perez-Leal, O.; Rico, M. C.; Gordon, J.; Bichenkov, E.; Mateo, G.; Kassem, E. M. M.; Hegazy, G. H.; Abou-Gharbia, M.; Childers, W. Bioorg. Med. Chem. Lett. 2017, 27, 3117.  doi: 10.1016/j.bmcl.2017.05.044

    24. [24]

      Ren, Q.; Wang, T.; Liu, J.; He, H. Chin. J. Org. Chem. 2005, 25, 1530(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.12.003

    25. [25]

      Shamroukh, A. H.; Rashad, A. E.; Abdelmegeid, F. M. J. Chem. Pharm. Res 2016, 8, 734.
       

    26. [26]

      Wang, X.; Zeng, Z.; Shi, D.; Tu, S.; Wei, X.; Zong, Z. Chin. J. Org. Chem. 2006, 26, 256(in Chinese).  doi: 10.3321/j.issn:0253-2786.2006.02.021

    27. [27]

      Huang, Z.; Liu, X.; Hu, M.; Lin, W.; Shi, D. Chin. J. Org. Chem. 2014, 34, 382(in Chinese).
       

    28. [28]

      Buron, F.; Merour, J. Y.; Akssira, M.; Guillaumet, G.; Routier, S. Eur. J. Med. Chem. 2015, 95, 76.  doi: 10.1016/j.ejmech.2015.03.029

    29. [29]

      Deng, L.; Zhong, H.; Wang, S. Chin. J. Org. Chem. 2014, 34, 414(in Chinese).
       

    30. [30]

      Arikkatt, S. D.; Mathew, B.; Joseph, J.; Chandran, M.; Bhat, A. R.; Krishnakumar, K. Int. J. Org. Bioorg. Chem. 2014, 4, 1.  doi: 10.4236/ijoc.2014.41001

    31. [31]

      Rewcastle, G. W.; Palmer, B. D.; Thompson, A. M.; Bridges, A. J.; Cody, D. R.; Zhou, H. R.; Fry, D. W.; McMichael, A.; Denny, W. A. J. Med. Chem. 1996, 39, 1823.  doi: 10.1021/jm9508651

    32. [32]

      Zhan, D.; Li, S.; Zhao, H.; Lan, M. Chin. J. Org. Chem. 2011, 31, 207(in Chinese).
       

    33. [33]

      Yoon, D. S.; Han, Y.; Stark, T. M.; Haber, J. C.; Gregg, B. T.; Stankovich, S. B. Org. Lett. 2004, 6, 4775.  doi: 10.1021/ol047919y

    34. [34]

      Vercek, B.; Leban, I.; Stanovnik, B.; Tisler, M. J. Org. Chem. 1979, 10, 1695.

    35. [35]

      Hackler, R. E. ; Jourdan, J. P. EP 0414386, 1991[Chem. Abstr. 1991, 115, 71630].

    36. [36]

      Soloducho, J. Arch. Pharm. 1990, 323, 513.  doi: 10.1002/(ISSN)1521-4184

    37. [37]

      Shen, Z.; He, X.; Dai, J.; Mo, W.; Hu, B.; Sun, N.; Hu, X. Tetrahedron 2011, 67, 1665.  doi: 10.1016/j.tet.2010.12.067

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    3. [3]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    4. [4]

      Chunwei LeiJian LiBo XuYu XieYun LingJuhua LuoWei Zhang . Synthesis of Ni/MnO/C nano-microspheres with synergistic effects of dielectric and magnetic loss for efficient microwave absorption. Chinese Chemical Letters, 2025, 36(7): 110419-. doi: 10.1016/j.cclet.2024.110419

    5. [5]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    6. [6]

      Qiuting ZhangFan WuJin LiuHang SuYanhui ZhongZian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    9. [9]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    10. [10]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    11. [11]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    12. [12]

      Chenxi ShangBoxuan LuChongbei WuShuqing ZhouLuyan ShiTayirjan Taylor IsimjanXiulin Yang . Inducing electronic rearrangement through Co3B-Mo2B5 catalysts: Efficient dual-function catalysis for NaBH4 hydrolysis and 4-nitrophenol reduction. Chinese Chemical Letters, 2025, 36(9): 111152-. doi: 10.1016/j.cclet.2025.111152

    13. [13]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    14. [14]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    15. [15]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    16. [16]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    17. [17]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    18. [18]

      Yujie WangHaoran WangYanni LiuManhua PengHongwei FanHong Meng . A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks. Chinese Chemical Letters, 2025, 36(8): 110189-. doi: 10.1016/j.cclet.2024.110189

    19. [19]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    20. [20]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

Metrics
  • PDF Downloads(13)
  • Abstract views(985)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return