Citation: Shao Wei, Liu Xin, Wang Tingting, Hu Xiao-Yu. Applications of Supramolecular Amphiphilc for the Construction of Drug Delivery Systems[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1107-1118. doi: 10.6023/cjoc201711027 shu

Applications of Supramolecular Amphiphilc for the Construction of Drug Delivery Systems

  • Corresponding author: Hu Xiao-Yu, huxy@nju.edu.cn
  • Received Date: 17 November 2017
    Revised Date: 4 December 2017
    Available Online: 8 May 2017

    Fund Project: the National Natural Science Foundation of China 21572101Project supported by the National Natural Science Foundation of China (No. 21572101)

Figures(14)

  • Stimuli-responsive supramolecular drug delivery systems (SDDSs) self-assembled by supra-amphiphiles have received tremendous attentions in cancer therapy due to various advantages of SDDSs, such as enhanced drug bioavailability, prolonged blood circulation and retention time, improved drug stability and so on. The construction of smart supramolecular drug delivery systems based on the different structural characteristics of macrocyclic compounds are reviewed and their recent applications in anti-cancer drug delivery are described. Advantages and drawbacks of the current supramolecular drug delivery systems are also discussed, along with the opportunities and challenges in future.
  • 加载中
    1. [1]

      Isrealachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. 1976, 72, 1525.

    2. [2]

      Zhang, S.; Moussodia, R. O.; Sun, H. J.; Leowanawat, P.; Muncan, A.; Nusbaum, C. D.; Chelling, K. M.; Heiney, P. A.; Klein, M. L.; Andre, S.; Roy, R.; Gabius, H.-J.; Percec, V. Angew. Chem., Int. Ed. 2014, 53, 10899.  doi: 10.1002/anie.201403186

    3. [3]

      Sorrenti, A.; Illa, O.; Ortuno, R. M. Chem. Soc. Rev. 2013, 42, 8200.  doi: 10.1039/c3cs60151j

    4. [4]

      Fu, T.; Ao, L.; Gao, Z.; Zhang, X.; Wang, F. Chin. Chem. Lett. 2016, 27, 1147.  doi: 10.1016/j.cclet.2016.06.054

    5. [5]

      Zhang, S.; Wang, Q.; Cheng, M.; Qian, X.; Yang, Y.; Jiang, J.; Wang, L. Chin. Chem. Lett. 2015, 26, 885.  doi: 10.1016/j.cclet.2015.05.015

    6. [6]

      Wu, X.; Gao, L.; Sun, J.; Hu, X-Y.; Wang, L. Chin. Chem. Lett. 2016, 27, 1655.  doi: 10.1016/j.cclet.2016.05.004

    7. [7]

      Wu, X.; Duan, Q.; Ni, M.; Hu, X-Y.; Wang, L. Chin. J. Org. Chem. 2014, 34, 437(in Chinese).
       

    8. [8]

      Hou, N.-N.; Sun, Q.; Zhang, N.; Ni, M.-F.; Lin, C.; Wang, L.-Y. Acta Polym. Sin. 2017, 86(in Chinese).
       

    9. [9]

      Rybtchinski, B. ACS Nano 2011, 5, 6791.
       

    10. [10]

      Sun, G.; Nie, C.; Zhao, X.; Li, Z. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese).
       

    11. [11]

      Ji, X.-F.; Xia, D.-Y.; Yan, X.-Z.; Wang, H.; Huang, F.-H. Acta Polym. Sin. 2017, 9(in Chinese).
       

    12. [12]

      Zhang, X.; Wang, C. Chem. Soc. Rev. 2011, 40, 94.  doi: 10.1039/B919678C

    13. [13]

      Kang, Y.; Liu, K.; Zhang, X. Langmuir 2014, 30, 5989.  doi: 10.1021/la500327s

    14. [14]

      Guo, D.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.  doi: 10.1021/ar500009g

    15. [15]

      Yu, G.; Jie, K.; Huang, F. Chem. Rev. 2015, 115, 7240.  doi: 10.1021/cr5005315

    16. [16]

      Ji, X.; Li, Y.; Wang, H.; Zhao, R.; Tang, G.; Huang, F. Polym. Chem. 2015, 6, 5021.  doi: 10.1039/C5PY00801H

    17. [17]

      Nakahata, M.; Takashima, Y.; Hashidzume, A.; Harada, A. Angew. Chem., Int. Ed. 2013, 52, 5731.  doi: 10.1002/anie.201300862

    18. [18]

      Zhu, K.; He, J.; Li, S.; Liu, M.; Wang, F.; Zhang, M.; Abliz, Z.; Yang, H.; Li, N.; Huang, F. J. Org. Chem. 2009, 74, 3905.  doi: 10.1021/jo900461g

    19. [19]

      Talotta, C.; Gaeta, C.; Qi, Z.; Schalley, C. A.; Neri, P. Angew. Chem., Int. Ed. 2013, 52, 7437.  doi: 10.1002/anie.201301570

    20. [20]

      Yan, X.; Wei, P.; Zhang, M.; Chi, X.; Liu, J.; Huang, F. Org. Lett. 2011, 13, 6370.  doi: 10.1021/ol202657s

    21. [21]

      Li, Y.; Flood, A. H. Angew. Chem., Int. Ed. 2008, 47, 2649.  doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Liu, M.; Li, S.; Hu, M.; Wang, F.; Huang, F. Org. Lett. 2010, 12, 760.  doi: 10.1021/ol9028463

    23. [23]

      Yoon, D.-W.; Gross, D. E.; Lynch, V. M.; Sessler, J. L.; Hay, B. P.; Lee, C.-H. Angew. Chem., Int. Ed. 2008, 47, 5038.  doi: 10.1002/anie.v47:27

    24. [24]

      Dong, S.; Zheng, B.; Wang, F.; Huang, F. Acc. Chem. Res. 2014, 47, 1982.  doi: 10.1021/ar5000456

    25. [25]

      Zhang, M.; Zhu, K.; Huang, F. Chem. Commun. 2010, 46, 8131.  doi: 10.1039/c0cc02717k

    26. [26]

      Selvapalam, N.; Ryu, S. H.; Kim, K. Nat. Chem. 2011, 3, 154.  doi: 10.1038/nchem.928

    27. [27]

      Ma, D.; Hettiarachchi, G.; Nguyen, D.; Zhang, B.; Wittenberg, J. B.; Zavalij, P. Y.; Briken, V.; Isaacs, L. Nat. Chem. 2012, 4, 503.  doi: 10.1038/nchem.1326

    28. [28]

      Wisner, J. A.; Beer, P. D.; Berry, N. G.; Tomapatanaget, B. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4983.  doi: 10.1073/pnas.062637999

    29. [29]

      Yu, G.; Zhang, Z.; He, J.; Abliz, Z.; Huang, F. Eur. J. Org. Chem. 2012, 5902.

    30. [30]

      Hubbard, A. L.; Davidson, G. J. E.; Patel, R. H.; Wisner, J. A.; Loeb, S. J. Chem. Commun. 2004, 138.

    31. [31]

      Niu, Z.; Huang, F.; Gibson, H. W. J. Am. Chem. Soc. 2011, 133, 2836.  doi: 10.1021/ja110384v

    32. [32]

      Villiers, V. C. R. Acad. Sci. 1891, 112, 536.

    33. [33]

      Irie, T.; Uekama, K. J. Pharm. Sci. 1997, 86, 147.  doi: 10.1021/js960213f

    34. [34]

      Brewster, M. E.; Loftsson, T. Adv. Drug Delivery Rev. 2007, 59, 645.  doi: 10.1016/j.addr.2007.05.012

    35. [35]

      Zhang, Z.; Ding, J.; Chen, X.; Xiao, C.; He, C.; Zhuang, X.; Chen, L.; Chen, X. Polym. Chem. 2013, 4, 3265.  doi: 10.1039/c3py00141e

    36. [36]

      Quan, C.; Chen, J.; Wang, H.; Li, C.; Chang, C.; Zhang, X.; Zhuo, R. ACS Nano 2010, 4, 4211.  doi: 10.1021/nn100534q

    37. [37]

      Ma, M.; Guan, Y.; Zhang, C.; Hao, J.; Xing, P.; Su, J.; Li, S.; Chu, X.; Hao, A. Colloids Surf., A 2014, 454, 38.  doi: 10.1016/j.colsurfa.2014.04.005

    38. [38]

      Wang, Y.; Wang, H.; Chen, Y.; Liu, X.; Jin, Q.; Ji, J. Colloids Surf., B 2014, 121, 189.  doi: 10.1016/j.colsurfb.2014.06.024

    39. [39]

      Yang, Y.; Zhang, Y.; Chen, Y.; Chen, J.; Liu, Y. J. Med. Chem. 2013, 56, 9725.  doi: 10.1021/jm4014168

    40. [40]

      Yhaya, F.; Lim, J.; Kim, Y.; Liang, M.; Gregory, A. M.; Stenzel, M. H. Macromolecules 2011, 44, 8433.  doi: 10.1021/ma2013964

    41. [41]

      Peng, L.; Feng, A.; Zhang, H.; Wang, H.; Jian, C.; Liu, B.; Gao, W.; Yuan, J. Polym. Chem. 2014, 5, 1751.  doi: 10.1039/C3PY01204B

    42. [42]

      Ma, M.; Shang, W.; Xing, P.; Li, S.; Chu, X.; Hao, A.; Liu, G.; Zhang, Y. Carbohydr. Res. 2015, 402, 208.  doi: 10.1016/j.carres.2014.09.008

    43. [43]

      Samanta, A.; Stuart, M. C. A.; Ravoo, B. J. J. Am. Chem. Soc. 2012, 134, 19909.  doi: 10.1021/ja3101837

    44. [44]

      Gourevich, D.; Dogadkin, O.; Volovick, A.; Wang, L.; Gnaim, J.; Cochran, S.; Melzer, A. J. Controlled Release 2013, 170, 316.  doi: 10.1016/j.jconrel.2013.05.038

    45. [45]

      Gutsche, C. D. Calixarenes, The Royal Society of Chemistry, Cambridge, 1989.
       

    46. [46]

      Stewart, D. R.; Gutsche, C. D. J. Am. Chem. Soc. 1999, 121, 4136.  doi: 10.1021/ja983964n

    47. [47]

      Wang, Y.; Liu, Y. Acta Chim. Sinica 2015, 73, 984(in Chinese).

    48. [48]

      Wang, K.; Guo, D.; Wang, X.; Liu, Y. ACS Nano 2011, 5, 2880.  doi: 10.1021/nn1034873

    49. [49]

      Guo, D.; Wang, K.; Wang, Y.; Liu, Y. J. Am. Chem. Soc. 2012, 134, 10244.  doi: 10.1021/ja303280r

    50. [50]

      Wang, K.; Guo, D.; Zhao, M.; Liu, Y. Chem.-Eur. J. 2016, 22, 1475.  doi: 10.1002/chem.201303963

    51. [51]

      Qin, Z.; Guo, D.; Gao, X.; Liu, Y. Soft Matter 2014, 10, 2253.

    52. [52]

      Behrend, R.; Meyer, E.; Rusche, F. Liebigs Ann. Chem. 1905, 339, 1.  doi: 10.1002/(ISSN)1099-0690

    53. [53]

      Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc. 1981, 103, 7367.  doi: 10.1021/ja00414a070

    54. [54]

      Park, K. M.; Lee, D. W.; Sarkar, B.; Jung, H.; Kim, J.; Ko, Y. H.; Lee, K. E.; Jeon, H.; Kim, K. Small 2010, 6, 1430.  doi: 10.1002/smll.v6:13

    55. [55]

      Loh, X. J.; Barrio, J.; Toh, P.; Lee, T. C.; Jiao, D.; Rauwald, U.; Appel, E. A.; Scherman, O. A. Biomacromolecules 2012, 13, 84.  doi: 10.1021/bm201588m

    56. [56]

      Wang, Y.; Li, D.; Wang, H.; Chen, Y.; Han, H.; Jin, Q.; Ji, J. Chem. Commun. 2014, 50, 9390.  doi: 10.1039/C4CC03978E

    57. [57]

      Pennakalathil, J.; Jahja, E.; Özdemir, E. S.; Konu, O.; Tuncel, D. Biomacromolecules 2014, 15, 3366.  doi: 10.1021/bm500839j

    58. [58]

      Jiao, D.; Geng, J.; Loh, X. J.; Das, D.; Lee, T. C.; Scherman, O. A. Angew. Chem., Int. Ed. 2012, 51, 9633.  doi: 10.1002/anie.v51.38

    59. [59]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    60. [60]

      Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L. J. Am. Chem. Soc. 2013, 135, 10542.  doi: 10.1021/ja405014r

    61. [61]

      Cao, Y.; Hu, X.-Y.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y. Z.; Wang, L. J. Am. Chem. Soc. 2014, 136, 10762.  doi: 10.1021/ja505344t

    62. [62]

      Hu, X.-Y.; Jia, K.; Cao, Y.; Li, Y.; Qin, S.; Zhou, F.; Lin, C.; Zhang, D.; Wang, L. Chem.-Eur. J. 2015, 21, 1208.  doi: 10.1002/chem.201405095

    63. [63]

      Chang, Y.; Yang, K.; Wei, P.; Huang, S.; Pei, Y.; Zhao, W.; Pei, Z. Angew. Chem., Int. Ed. 2014, 53, 13126.  doi: 10.1002/anie.201407272

    64. [64]

      Yang, K.; Chang, Y.; Wen, J.; Lu, Y.; Pei, Y.; Cao, S.; Wang, F.; Pei, Z. Chem. Mater. 2016, 28, 1990.  doi: 10.1021/acs.chemmater.6b00696

    65. [65]

      Yang, K.; Pei, Y.; Wen, J.; Pei, Z. Chem. Commun. 2016, 52, 9316.  doi: 10.1039/C6CC03641D

    66. [66]

      Huang, X.; Du, X. ACS Appl. Mater. Interfaces 2014, 53, 20430.

    67. [67]

      Yao, Y.; Wang, Y.; Zhao, R.; Shao, L.; Tang, R.; Huang, F. J. Mater. Chem. B 2016, 4, 2691.

    68. [68]

      Yu, G.; Yu, W.; Shao, L.; Zhang, Z.; Chi, X.; Mao, Z.; Gao, C.; Huang, F. Adv. Funct. Mater. 2016, 26, 8999.  doi: 10.1002/adfm.v26.48

    69. [69]

      Liu, X.; Shao, W.; Zheng, Y.; Yao, C.; Peng, L.; Zhang, D.; Hu, X.-Y.; Wang, L. Chem. Commun. 2017, 53, 8596.  doi: 10.1039/C7CC04932C

    70. [70]

      Merzel, R. L.; Chen, J. J.; Marsh, E. N. G.; Holl, M. M. B. Chin. Chem. Lett. 2015, 26, 426.  doi: 10.1016/j.cclet.2014.12.015

    71. [71]

      Zhou, Y.; Li, H.; Yang, Y. Chin. Chem. Lett. 2015, 26, 825.  doi: 10.1016/j.cclet.2015.01.038

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    8. [8]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(42)
  • Abstract views(5246)
  • HTML views(1985)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return