Citation: Yang Lifeng, Hui Renjie, Shan Hengyue, Gong Kai. Iodine-Catalyzed Functionalization of N-H Bond of Imidazoles[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3242-3247. doi: 10.6023/cjoc201711015 shu

Iodine-Catalyzed Functionalization of N-H Bond of Imidazoles

  • Corresponding author: Gong Kai, gongkai@jiangnan.edu.cn
  • Received Date: 8 November 2017
    Revised Date: 4 December 2017
    Available Online: 8 December 2017

    Fund Project: the National Natural Science Foundation of China 51303069the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions PPZY2015B146Project supported by the National Natural Science Foundation of China (No. 51303069), and the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015B146)

Figures(2)

  • Since benzimidazole containing moieties have a lot of pharmacological activities, we reported the ageneral metal-free and cost-effective, I2/DTBP-catalyzed method for the functionalization of N-H bonds of azoles via α-C(sp3)-H activation of cyclic ethers or cyclic thioethers. And this method is also applicable to a diverse range of N-substituted azoles and cyclic ethers/thioethers. By using the free-radical scavenger 2, 2, 6, 6-tetramethylpiperidin-1-oxyl (TEMPO) as a control, we suggest that a radical/SET mechanism proceeding via a radical/oxonium or thionium ion may be involved in the reaction.
  • 加载中
    1. [1]

      (a) Davies, H. M. L. ; Manning, J. R. Nature 2008, 451, 417.
      (b) Collet, F. ; Dodd, R. ; Dauban, P. Chem. Commun. 2009, 5061.
      (c) Zalatan, D. ; Bois, J. D. Top. Curr. Chem. 2010, 292, 347.
      (d) Bois, J. D. Org. Process Res. Dev. 2011, 15, 758.
      (e) Gephart, R. T. ; Warren, T. H. Organometallics 2012, 31, 7728.

    2. [2]

      (a) Liao, C. L. ; Shi, J. J. ; Liang, P. H. ; Wong, C. H. Chem. Biol. 2006, 13, 261.
      (b) Ren, Y. ; Zhang, L. ; Zhou, C. H. ; Geng, R. X. Med. Chem. 2014, 4, 640.
      (c) Rad, M. N. S. ; Khalafi-Nezhad, A. ; Behrouz, S. Beilstein J. Org. Chem. 2010, 6, 49.
      (d) Zhang, H. Z. ; Damu, G. L. V. ; Cai, G. X. ; Zhou, C. H. Eur. J. Med. Chem. 2013, 64, 329.
      (e) Rezaei, Z. ; Khabnadideh, S. ; Pakshir, K. ; Hossaini, Z. ; Amiri, F. ; Assadpour, E. Eur. J. Med. Chem. 2009, 44, 3064.
      (f) Sharma, D. ; Narasimhan, B. ; Kumar, P. ; Jalbout, A. Eur. J. Med. Chem. 2009, 44, 1119.
      (g) Santo, R. D. ; Tafi, A. ; Costi, R. ; Botta, M. ; Artico, M. ; Corelli, F. ; Forte, M. ; Caporuscio, F. ; Angiolella, L. ; Palamara, A. T. J. Med. Chem. 2005, 48, 5140.
      (h) Rossello, A. ; Bertini, S. ; Lapucci, A. ; Macchia, M. ; Martinelli, A. ; Rapposelli, S. ; Herreros, E. ; Macchia, B. J. Med. Chem. 2002, 45, 4903.
      (i) Dubey, A. ; Srivastava, S. K. ; Srivastava, S. D. Bioorg. Med. Chem. Lett. 2011, 21, 569.
      (j) Giornal, F. ; Pazenok, S. ; Rodefeld, L. ; Lui, N. ; Vors, J. P. ; Leroux, F. R. J. Fluorine Chem. 2013, 152, 2.

    3. [3]

      (a) Li, F. ; Hu, J. J. ; Koh, L. L. ; Hor, T. S. A. Dalton Trans. 2010, 39, 5231.
      (b) Huckaba, A. J. ; Hollis, T. K. ; Howell, T. O. ; Valle, H. U. ; Wu, Y. Organometallics 2013, 32, 63.
      (c) Gupta, S. ; Basu, B. ; Das, S. Tetrahedron 2013, 69, 122.
      (d) Kore, R. ; Srivastava, R. J. Mol. Catal. A: Chem. 2011, 345, 117.
      (e) Tsuji, Y. ; Ohno, H. RSC Adv. 2012, 2, 11279.

    4. [4]

      (a) Milen, M. ; Grün, A. ; Bálint, E. ; Dancsó, A. ; Keglevich, G. Synth. Commun. 2010, 40, 2291.
      (b) Shieh, W. C. ; Lozanov, M; Repič, O. Tetrahedron Lett. 2003, 44, 6943.
      (c) Hayat, S. ; Attaur-Rahman; Choudhary, M. I. ; Khan, K. M. ; Schumann, W. ; Bayer, E. Tetrahedron 2001, 57, 9951.

    5. [5]

      (a) Guo, S. ; Yu, J. T. ; Dai, Q. ; Yang, H. ; Cheng, J. Chem. Commun. 2014, 50, 6240.
      (b) Jia, Z. ; Nagano, T. ; Li, X. ; Chan, A. S. C. Eur. J. Org. Chem. 2013, 858.
      (c) Chu, X. Q. ; Meng, H. ; Zi, Y. ; Xu, X. P. ; Ji, S. J. Chem. Commun. 2014, 50, 9718.
      (d) Majji, G. ; Guin, S. ; Gogoi, A. ; Rout, S. K. ; Patel, B. K. Chem. Commun. 2013, 49, 3031.
      (e) Shi, E. ; Shao, Y. ; Chen, S. ; Hu, H. ; Liu, Z. ; Zhang, J. ; Wan, X. Org. Lett. 2012, 14, 3384.
      (f) Zhang, S. ; Guo, L. N. ; Wang, H. ; Duan, X. H. Org. Biomol. Chem. 2013, 11, 4308.
      (g) Huang, J. ; Li, L. T. ; Li, H. Y. ; Husan, E. ; Wang, P. ; Wang, B. Chem. Commun. 2012, 48, 10204.
      (h) Zhang, X. ; Wang, M. ; Li, P. ; Wang, L. Chem. Commun. 2014, 50, 8006.
      (i) Xue, Q. ; Xie, J. ; Li, H. ; Cheng, Y. ; Zhu, C. Chem. Commun. 2013, 49, 3700.
      (j) Zhao, J. ; Li, P. ; Xia, C. ; Li, F. Chem. Commun. 2014, 50, 4751.
      (k) Chen, S. ; Xu, Y. ; Wan, X. Org. Lett. 2011, 13, 6152.
      (l) Froehr, T. ; Sindlinger, C. P. ; Kloeckner, U. ; Finkbeiner, P. ; Nachtsheim, B. J. Org. Lett. 2011, 13, 754.
      (m) Mai, W. P. ; Song, G. ; Yuan, J. W. ; Yang, L. R. ; Sun, G. C. ; Xiao, Y. M. ; Mao, P. ; Qu, L. B. RSC Adv. 2013, 3, 3869.
      (n) Lv, Y. ; Li, Y. ; Xiong, T. ; Lu, Y. ; Liu, Q. ; Zhang, Q. Chem. Commun. 2014, 50, 2367.

    6. [6]

      Pan, S.; Liu, J.; Li, H.; Wang, Z.; Guo, X.; Li, Z. Org. Lett. 2010, 12, 1932.  doi: 10.1021/ol100670m

    7. [7]

      (a) Buslova, I. ; Hua, X. L. Adv. Synth. Catal. 2014, 356, 3325.
      (b) Aruri, H. ; Singh, U. ; Sharma, S. ; Gudup, S. ; Bhogal, M. ; Kumar, S. ; Singh, D. ; Gupta, V. K. ; Kant, R. ; Vishwakarma, R. A. ; Singh, P. P. J. Org. Chem. 2015, 80, 1929.

    8. [8]

      (a) Hao, W. J. ; Wang, S. Y. ; Ji, S. J. ACS Catal. 2013, 3, 2501.
      (b) Sun, J. ; Qiu, J. K. ; Zhu, Y. L. ; Guo, C. ; Hao, W. J. ; Jiang, B. ; Tu, S. J. J. Org. Chem. 2015, 80, 8217.
      (c) von der Heiden, D. ; Bozkus, S. ; Klussmann, M. ; Breugst, M. J. Org. Chem. 2017, 82, 4037.
      (d) Zhang, Z. ; Pi, C. ; Tong, H. ; Cui, X. ; Wu, Y. Org. Lett. 2017, 19, 440.
      (e) Wang, B. ; Meng, Y. ; Zhou, Y. ; Ren, L. ; Wu, J. ; Yu, W. ; Chang, J. J. Org. Chem. 2017, 82, 5898.
      (f) Yuan, S. T. ; Wang, Y. H. ; Qiu, G. Y. S. ; Liu, J. B. Chin. J. Org. Chem. 2017, 37, 566 (in Chinese).
      (袁斯甜, 王艳华, 邱观音生, 刘晋彪, 有机化学, 2017, 37, 566. )
      (g) Duan, Y. N. ; Jiang, S. ; Han, Y. C. ; Sun, B. ; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973 (in Chinese).
      (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973. )

    9. [9]

      (a) Yang, D. ; Yan, K. ; Wei, W. ; Zhao, J. ; Zhang, M. ; Sheng, X. ; Li, G. ; Lu, S. ; Wang, H. J. Org. Chem. 2015, 80, 6083.
      (b) Beukeaw, D. ; Udomsasporn, K. ; Yotphan, S. J. Org. Chem. 2015, 80, 3447.
      (c) Luo, W. K. ; Shi, X. ; Zhou, W. ; Yang, L. Org. Lett. 2016, 18, 2036.
      (d) Wang, Y. ; Jiang, C. M. ; Li, H. L. ; He, F. S. ; Luo, X. ; Deng, W. P. J. Org. Chem. 2016, 81, 8653.
      (e) Siddaraju, Y. ; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.
      (f) Fan, W. ; Yang, Z. ; Jiang, B. ; Li, G. Org. Chem. Front. 2017, 4, 1091.
      (g) Fan, W. ; Li, Q. ; Li, Y. ; Sun, H. ; Jiang, B. ; Li, G. Org. Lett. 2016, 18, 1258.
      (h) Yang, D. ; Sun, P. ; Wei, W. ; Meng, L. ; He, L. ; Fang, B. ; Jiang, W. ; Wang, H. Org. Chem. Front. 2016, 3, 1457.
      (i) Wu, W. ; An, Y. ; Li, J. ; Yang, S. ; Zhu, Z. ; Jiang, H. Org. Chem. Front. 2017, 4, 1751.
      (j) Lin, X. F. ; Cui, S. L. ; Wang, Y. G. Tetrahedron Lett. 2006, 47, 3127.

    10. [10]

      Cheng, D.; Wu, L.; Lv, H.; Xu, X.; Yan, J. J. Org. Chem. 2017, 82, 1610 and references cited therein.  doi: 10.1021/acs.joc.6b02787

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    8. [8]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    9. [9]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    12. [12]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    13. [13]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    14. [14]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    15. [15]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    16. [16]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    19. [19]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    20. [20]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

Metrics
  • PDF Downloads(2)
  • Abstract views(914)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return