Citation: Zhang Youming, Han Bingbing, Lin Qi, Mao Pengpeng, Chen Jinfa, Yao Hong, Wei Taibao. Synthesis and Fe3+ Sensing Properties of the Chemosensor Based on Functionalized Naphthalimide Schiff Base Derivative[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1800-1805. doi: 10.6023/cjoc201711002 shu

Synthesis and Fe3+ Sensing Properties of the Chemosensor Based on Functionalized Naphthalimide Schiff Base Derivative

  • Corresponding author: Zhang Youming,  Wei Taibao, weitaibao@126.com
  • Received Date: 1 November 2017
    Revised Date: 17 January 2018
    Available Online: 16 July 2018

    Fund Project: the National Natural Science Foundation of China 21262032the National Natural Science Foundation of China 21661028the National Natural Science Foundation of China 21662031the National Natural Science Foundation of China 21574104Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661028, 21574104, 21262032)

Figures(7)

  • A novel sensor molecule 2-hydroxyl-1-naldehyde-N-(4-aminophenyl)-1, 8-naphthalimide (H1) based on functionalized naphthalimide Schiff Base derivative was synthesized. H1 was characterized by 1H NMR, 13C NMR and HRMS. Furthermore, its fluorescence properties were studied in dimethyl sulfoxide (DMSO)/H2O (V:V=7:3) solutions. Its maximum emission wavelength was 496 nm. The solution of H1 has yellow-green fluorescence under the UV lamp (365 nm). H1 showed fluorescence-colorimetric dual channel identification ability for Fe3+. With the addition of various metal ions into the H1 solution, only Fe3+ caused the fluorescence of the H1 quenching and the color disappeared. Other cations such as Ag+, Ca2+, Ba2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cu2+, Mg2+ and Hg2+ could not induce similar response. The results of anti-disturbance experiment demonstrated that other cations can not interfere in the detection of Fe3+. H1 has good sensitivity for Fe3+, the fluorescence and UV-Vis detection limits of the H1 for Fe3+ are 3.04×10-8 and 2.71×10-6 mol·L-1, respectively. Finally, the test strips based on the H1 were prepared, which could conveniently and efficiently detect Fe3+ in water.
  • 加载中
    1. [1]

      Lin, Q.; Chen, P.; Liu, J.; Fu, Y.-P.; Zhang, Y.-M.; Wei, T.-B. Prog. Chem. 2013, 25, 1177 (in Chinese).

    2. [2]

      Lin, Q.; Liu, X.; Chen, P.; Wei, T.-B.; Zhang, Y.-M. Prog. Chem. 2013, 25, 2131 (in Chinese).

    3. [3]

      Zhang, P.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2014, 34, 1300 (in Chinese).
       

    4. [4]

      Li, C.-W.; Yang, D.; Yin, B.; Guo, Y. Chin. J. Org. Chem. 2016, 36, 787 (in Chinese).
       

    5. [5]

      Graham, R. C.; Hamilton, S. K.; Sahoo, S. K.; Narinder Singh, N. K.; Barry, W. H.; John, F. C. Chem. Soc. Rev. 2015, 44, 4415.  doi: 10.1039/C4CS00365A

    6. [6]

      Guo, X.-F.; Qian, X.-H.; Jia, L.-H. J. Am. Chem. Soc. 2004, 126, 2272.  doi: 10.1021/ja037604y

    7. [7]

      Koner, A. L.; Schatz, J.; Nau, W. M.; Pischel, U. J. Org. Chem. 2007, 72, 3889.  doi: 10.1021/jo070268+

    8. [8]

      Huang, X.-M.; Guo, Z.-Q.; Zhu, W.-H.; Xie, Y. S.; Tian, H. Chem. Commun. 2008, 5143.

    9. [9]

      Reger, D. L.; Leitner, A.; Smith, M. D. Cryst. Growth Des. 2015, 15, 5637.  doi: 10.1021/acs.cgd.5b01387

    10. [10]

      Pischel, U.; Uzunova, V. D.; Remon, P.; Nau, W. M. Chem. Commun. 2010, 46, 2635.  doi: 10.1039/b927595a

    11. [11]

      Ferreira, R.; Baleizao, C.; Munõz-Molina, J. M.; BerberanSantos, M. N.; Pischel, U. J. Phys. Chem. A 2011, 115, 1092.  doi: 10.1021/jp110470h

    12. [12]

      Nandhikonda, P.; Begaye, M. P.; Heagy, M. D. Tetrahedron Lett. 2009, 50, 2459.  doi: 10.1016/j.tetlet.2009.02.197

    13. [13]

      Jiang, G.; Wang, S.; Yuan, W.; Jiang, L.; Song, Y.; Tian, H.; Zhu, D.-B. Chem. Mater. 2006, 18, 235.  doi: 10.1021/cm052251i

    14. [14]

      Gu, P.-Y.; Lu, C.-J.; Ye, F.-L.; Ge, J.-F.; Xu, Q.-F.; Hu, Z.-J.; Li, N.-J.; Lu, J.-M. Chem. Commun. 2012, 48, 10234.  doi: 10.1039/c2cc35266d

    15. [15]

      Borisova, N. E.; Reshetova, M. D.; Ustynyuk, U. Y. Chem. Rev. 2007, 107, 46.  doi: 10.1021/cr0683616

    16. [16]

      Kamiya, Y.; Asanuma, H. Acc. Chem. Res. 2014, 47, 1663.  doi: 10.1021/ar400308f

    17. [17]

      Song, Q.-S.; Zhou, W.; Wu, X.-M.; Wu, F. Acta Chim. Sinica 2016, 74, 435 (in Chinese).

    18. [18]

      Narayanaswamy, N.; Govindaraju, T. Sens. Actuators, B 2012, 161, 304.  doi: 10.1016/j.snb.2011.10.036

    19. [19]

      Chereddy, N.; Raju, M.; Nagaraju, P.; Krishnaswamy, V.; Korrapati, P.; Bangal, P.; Rao, V. Analyst 2014, 139, 6352.  doi: 10.1039/C4AN01528B

    20. [20]

      Bonda, D.; Lee, H.; Blair, J.; Zhu, X.; Perry, G.; Smith, M. Metallomics 2011, 3, 267.  doi: 10.1039/c0mt00074d

    21. [21]

      Gao, B.; Gong, W.-T.; Zhang, L.-Q.; Ye, J.-W.; Ning, G. Sens. Actuators, B 2012, 162, 391.  doi: 10.1016/j.snb.2011.12.060

    22. [22]

      Zhang, Y.-M.; Lin, Q.; Wei, T.-B.; Wang, D.-D.; Yao, H.; Wang, Y.-L. Chem. Commun. 2009, 447.

    23. [23]

      Chen, C.; Wang, R.-Y.; Guo, L.-Q.; Fu, N.-Y. Org. Lett. 2011, 13, 1162.  doi: 10.1021/ol200024g

    24. [24]

      Lin, Q.; Zheng, F.; Liu, L.; Mao, P.-P.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. RSC Adv. 2016, 6, 111928.  doi: 10.1039/C6RA23878E

    25. [25]

      Lin, Q.; Lu, T.-T.; Zhu, X.; Wei, T.-B.; Li, H.; Zhang, Y.-M. Chem. Sci. 2016, 7, 5341.  doi: 10.1039/C6SC00955G

    26. [26]

      Lin, Q.; Lu, T.-T.; Zhu, X.; Sun, B.; Yang, Q.-P.; Wei, T.-B.; Zhang, Y.-M. Chem. Commun. 2015, 51, 1635.  doi: 10.1039/C4CC07814D

    27. [27]

      Wei, T.-B.; Chen, J.-F.; Cheng, X.-B.; Li, H.; Han, B.-B.; Zhang, Y.-M.; Yao, H.; Lin, Q. Org. Chem. Front. 2017, 4, 210.  doi: 10.1039/C6QO00569A

    28. [28]

      Lin, Q.; Sun, B.; Yang, Q.-P.; Fu, Y.-P.; Zhu, X.; Wei, T.-B.; Zhang, Y.-M. Chem.-Eur. J. 2014, 20, 11457.  doi: 10.1002/chem.v20.36

    29. [29]

      Cheng, X.-B.; Li, H.; Zheng, F.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. RSC Adv. 2016, 6, 20987.  doi: 10.1039/C5RA26240B

    30. [30]

      Lin, Q.; Zhong, K-P.; Zhu, J-H.; Ding, L.; Su, J-X.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Macromolecule 2017, 50, 7863.  doi: 10.1021/acs.macromol.7b01835

  • 加载中
    1. [1]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    4. [4]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    5. [5]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    8. [8]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    20. [20]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

Metrics
  • PDF Downloads(22)
  • Abstract views(2057)
  • HTML views(717)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return