Citation: Guo Zhen, Xie Mingsheng, Han Ruijie, Qu Guirong, Guo Haiming. Ag-Catalyzed Monofluoromethylation of Purin-9-yl Allenes with Fluorobis(phenylsulfonyl)methane[J]. Chinese Journal of Organic Chemistry, ;2018, 38(1): 112-117. doi: 10.6023/cjoc201711001 shu

Ag-Catalyzed Monofluoromethylation of Purin-9-yl Allenes with Fluorobis(phenylsulfonyl)methane

  • Corresponding author: Qu Guirong, quguir@sina.com Guo Haiming, ghm@htu.edu.cn
  • Received Date: 1 November 2017
    Revised Date: 19 November 2017
    Available Online: 21 January 2017

    Fund Project: the Program of Introducing Talents of Discipline to Universities D17007the Plan for Scientific Innovation Talent of Henan Province 164200510008the National Natural Science Foundation of China 21402041the Program of Introducing Talents of Discipline to Universities 111计划the National Natural Science Foundation of China U1604283Project supported by the National Natural Science Foundation of China (Nos. U1604283, 21402041), the Plan for Scientific Innovation Talent of Henan Province (No. 164200510008), the China Postdoctoral Science Foundation Funded Project (No. 2016M592293), the Program for Innovative Research Team in Science, Technology in University of Henan Province (No. 15IRTSTHN003) and the Program of Introducing Talents of Discipline to Universities (111 Project, No. D17007)the Program for Innovative Research Team in Science, Technology in University of Henan Province 15IRTSTHN003the China Postdoctoral Science Foundation Funded Project 2016M592293

Figures(4)

  • The monofluoromethylation of purin-9-yl allenes with fluorobis(phenylsulfonyl)methane has been achieved. With AgF (3 mol%) as the catalyst, the fluorobis(phenylsulfonyl)methylated adducts could be afforded in excellent yields. The monofluoromethylation exhibited high chemoselectivities and E-selectivies. Meanwhile, the monofluoromethylation of purin-9-yl allenes with fluorobis(phenylsulfonyl)methane provided a useful route to construct fluorinated acyclic nucleoside analogues.
  • 加载中
    1. [1]

      (a) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
      (b) Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, Germany, 2004.
      (c) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
      (d) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693.
      (e) Bégué, J.-P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992.
      (f) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
      (g) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (h) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (i) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
      (j) Liao, F.-M.; Yu, J.-S.; Zhou, J. Chin. J. Org. Chem. 2017, 37, 2175(in Chinese).(廖富民, 余金生, 周剑, 有机化学, 2017, 37, 2175.)
      (k) Liao, F.-M.; Cao, Z.-Y.; Yu, J.-S.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 2459.

    2. [2]

      Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Ni, C.; Li, Y.; Hu, J. J. Org. Chem. 2006, 71, 6829.  doi: 10.1021/jo060955l

    4. [4]

      Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      (a) Furukawa, T. ; Goto, Y. ; Kawazoe, J. ; Tokunaga, E. ; Naka-mura, S. ; Yang, Y. ; Du, H. ; Kakehi, A. ; Shiro, M. ; Shibata, N. Angew. Chem., Int. Ed. 2010, 49, 1642.
      (b) Prakash, G. K. S. ; Shao, N. ; Zhang, Z. ; Ni, C. ; Wang, F. ; Haiges, R. ; Olah, G. A. J. Fluorine Chem. 2012, 133, 27.
      (c) Shen, X. ; Miao, W. ; Ni, C. ; Hu, J. Angew. Chem., Int. Ed. 2014, 53, 775.

    6. [6]

      (a) Liu, W. -B. ; Zheng, S. -C. ; He, H. ; Zhao, X. -M. ; Dai, L. -X. ; You, S. -L. Chem. Commun. 2009, 6604.
      (b) Furukawa, T. ; Kawazoe, J. ; Zhang, W. ; Nishimine, T. ; Tokunaga, E. ; Matsumoto, T. ; Shiro, M. ; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 9684.
      (c) Yang, W. ; Wei, X. ; Pan, Y. ; Lee, R. ; Zhu, B. ; Liu, H. ; Yan, L. ; Huang, K. -W. ; Jiang, Z. ; Tan, C. -H. Chem. Eur. J. 2011, 17, 8066.

    7. [7]

      (a) Shen, X. ; Zhang, L. ; Zhao, Y. ; Zhu, L. ; Li, G. ; Hu, J. Angew. Chem., Int. Ed. 2011, 50, 2588.
      (b) Ma, H. ; Matsuzaki, K. ; Yang, Y. -D. ; Tokunaga, E. ; Nakane, D. ; Ozawa, T. ; Masuda, H. ; Shibata, N. Chem. Commun. 2013, 49, 11206.
      (c) Shen, X. ; Ni, C. ; Hu, J. Chin. J. Chem. 2013, 31, 878.
      (d) Mizuta, S. ; Shibata, N. ; Goto, Y. ; Furukawa, T. ; Nakamura, S. ; Toru, T. J. Am. Chem. Soc. 2007, 129, 6394.
      (e) Prakash, G. K. S. ; Gurung, L. ; Jog, P. V. ; Tanaka, S. ; Thomas, T. E. ; Ganesh, N. ; Haiges, R. ; Mathew, T. ; Olah, G. A. Chem. Eur. J. 2013, 19, 3579.

    8. [8]

      (a) Furukawa, T. ; Shibata, N. ; Mizuta, S. ; Nakamura, S. ; Toru, T. ; Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 8051.
      (b) Zhang, S. ; Zhang, Y. ; Ji, Y. ; Li, H. ; Wang, W. Chem. Commun. 2009, 4886.
      (c) Alba, A. -N. ; Companyó, X. ; Moyano, A. ; Rios, R. Chem. Eur. J. 2009, 15, 7035.
      (d) Moon, H. W. ; Cho, M. J. ; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896.
      (e) Ullah, F. ; Zhao, G. -L. ; Deiana, L. ; Zhu, M. ; Dziedzic, P. ; Ibrahem, I. ; Hammar, P. ; Sun, J. ; Córdova, A. Chem. Eur. J. 2009, 15, 10013.

    9. [9]

      Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2008, 73, 5699.  doi: 10.1021/jo702479z

    10. [10]

      hen, X.; Zhang, W.; Zhang, L.; Luo, T.; Wan, X.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 6966.  doi: 10.1002/anie.201202451

    11. [11]

      Ogasawara, M.; Murakami, H.; Furukawa, T.; Takahashi, T.; Shibata, N. Chem. Commun. 2009, 7366.

    12. [12]

      (a) Baszczyňski, O. ; Zaneba, Z. Med. Res. Rev. 2013, 33, 1304.
      (b) Jindřich, J. ; Hol, A. ; Dvořáková, H. Collect. Czech. Chem. Commun. 1993, 58, 1645.
      (c) Kiesewetter, D. O. ; Knudson, K. ; Collins, M. ; Srinivasula, S. ; Lim, E. ; Mascio, M. D. J. Labelled Compd. Radiopharm. 2008, 51, 187.

    13. [13]

      (a) Liang, L. ; Xie, M. -S. ; Wang, H. -X. ; Niu, H. -Y. ; Qu, G. -R. ; Guo, H. -M. J. Org. Chem. 2017, 82, 5966.
      (b) Liang, L. ; Xie, M. -S. ; Qin, T. ; Zhu, M. ; Qu, G. -R. ; Guo, H. -M. Org. Lett. 2017, 19, 5212.
      (c) Sun, H. -L. ; Chen, F. ; Xie, M. -S. ; Guo, H. -M. ; Qu, G. -R. ; He, Y. -M. ; Fan, Q. -H. Org. Lett. 2016, 18, 2260.
      (d) Zhang, D. -J. ; Xie, M. -S. ; Qu, G. -R. ; Gao, Y. -W. ; Guo, H. -M. Org. Lett. 2016, 18, 820.
      (e) Xie, M. -S. ; Wang, Y. ; Li, J. -P. ; Du, C. ; Zhang, Y. -Y. ; Hao, E. -J. ; Zhang, Y. -M. ; Qu, G. -R. ; Guo, H. -M. Chem. Commun. 2015, 51, 12451.
      (f) Niu, H. -Y. ; Du, C. ; Xie, M. -S. ; Wang, Y. ; Zhang, Q. ; Qu, G. -R. ; Guo, H. -M. Chem. Commun. 2015, 51, 3328.
      (g) Wei, T. ; Xie, M. -S. ; Qu, G. -R. ; Niu, H. -Y. ; Guo, H. -M. Org. Lett. 2014, 16, 900.

    14. [14]

      For reviews about synthesis of acyclic nucleoside analogues, see: (a) Xie, M. -S. ; Niu, H. -Y. ; Qu, G. -R. ; Guo, H. -M. Tetrahedron Lett. 2014, 55, 7156.
      (b) Guo, H. -M. ; Wu, S. ; Niu, H. -Y. ; Song, G. ; Qu, G. -R. In Chemical Synthesis of Nucleoside Analogues, Ed. : Merino, P., John Wiley & Sons, Hoboken, New Jersey, 2013, p. 103.

  • 加载中
    1. [1]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    4. [4]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    5. [5]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    6. [6]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    7. [7]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    8. [8]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    9. [9]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    10. [10]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      . . University Chemistry, 2024, 39(9): 0-0.

    13. [13]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    14. [14]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    15. [15]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    16. [16]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    17. [17]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    18. [18]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    19. [19]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    20. [20]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

Metrics
  • PDF Downloads(8)
  • Abstract views(2393)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return